Chinese Journal of Chemical Engineering ›› 2025, Vol. 81 ›› Issue (5): 142-150.DOI: 10.1016/j.cjche.2025.02.014
Previous Articles Next Articles
Baowei Wang, Jiangzhou Kong, Xiaoyan Li
Received:2024-09-11
Revised:2025-02-14
Accepted:2025-02-24
Online:2025-03-09
Published:2025-05-28
Contact:
Baowei Wang,E-mail:wangbw@tju.edu.cn
Supported by:Baowei Wang, Jiangzhou Kong, Xiaoyan Li
通讯作者:
Baowei Wang,E-mail:wangbw@tju.edu.cn
基金资助:Baowei Wang, Jiangzhou Kong, Xiaoyan Li. Preparation of MoO3/γ-Al2O3 sulfur-resistant methanation catalyst with segmented plasma fluidized bed[J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 142-150.
Baowei Wang, Jiangzhou Kong, Xiaoyan Li. Preparation of MoO3/γ-Al2O3 sulfur-resistant methanation catalyst with segmented plasma fluidized bed[J]. 中国化学工程学报, 2025, 81(5): 142-150.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.02.014
| [1] I. Hussain, G. Tanimu, S. Ahmed, C.U. Aniz, H. Alasiri, K. Alhooshani, A review of the indispensable role of oxygen vacancies for enhanced CO2 methanation activity over CeO2-based catalysts: Uncovering, influencing, and tuning strategies, Int. J. Hydrog. Energy 48 (64) (2023) 24663-24696. [2] J. Ren, H. Lou, N. Xu, F. Zeng, G. Pei, Z.D. Wang, Methanation of CO/CO2 for power to methane process: Fundamentals, status, and perspectives, J. Energy Chem. 80 (2023) 182-206. [3] A. Saxena, 10 - Synthetic natural gas from coal, Advances in Natural Gas: Formation, Processing, and Applications Volume: 1: Natural Gas Formation and Extraction, Elsevier,(2024) 245-259. [4] Q. Guo, D. Shaozhong Li, D. Jin Li, D. Yongke Hu, D. Yanxing Li, Effect of SiO2 on the CO selective methanation over SiO2/Ni-ZrO2 catalysts, ChemCatChem 14 (1) (2022) e202101281. [5] Y.H. Han, J.X. Zhao, Y.H. Quan, S.N. Yin, S.P. Wu, J. Ren, Highly efficient LaxCe1-xO2-x/2 nanorod-supported nickel catalysts for CO methanation: effect of La addition, Energy Fuels 35 (4) (2021) 3307-3314. [6] M.H. Zhu, P.F. Tian, X.Y. Cao, J.C. Chen, T.C. Pu, B.F. Shi, J. Xu, J. Moon, Z.L. Wu, Y.F. Han, Vacancy engineering of the nickel-based catalysts for enhanced CO2 methanation, Appl. Catal. B Environ. 282 (2021) 119561. [7] Z.H. Li, K. Zhang, W.H. Wang, J.L. Qu, Y. Tian, B.W. Wang, X.B. Ma, Kinetics of sulfur-resistant methanation over supported molybdenum-based catalyst, J. Taiwan Inst. Chem. Eng. 68 (2016) 239-245. [8] K. Zhang, Q. Wang, B.W. Wang, Y. Xu, X.B. Ma, Z.H. Li, A DFT study on CO methanation over the activated basal plane from a strained two-dimensional nano-MoS2, Appl. Surf. Sci. 479 (2019) 360-367. [9] D. Pashchenko, I. Makarov, Carbon deposition in steam methane reforming over a Ni-based catalyst: Experimental and thermodynamic analysis, Energy 222 (2021) 119993. [10] L. Silvester, A. Antzara, G. Boskovic, E. Heracleous, A.A. Lemonidou, D.B. Bukur, NiO supported on Al2O3 and ZrO2 oxygen carriers for chemical looping steam methane reforming, Int. J. Hydrog. Energy 40 (24) (2015) 7490-7501. [11] F.H. Meng, X. Li, M.H. Li, X.X. Cui, Z. Li, Catalytic performance of CO methanation over La-promoted Ni/Al2O3 catalyst in a slurry-bed reactor, Chem. Eng. J. 313 (2017) 1548-1555. [12] Y. Zeng, H.F. Ma, H.T. Zhang, W.Y. Ying, D.Y. Fang, Highly efficient NiAl2O4-free Ni/γ-Al2O3 catalysts prepared by solution combustion method for CO methanation, Fuel 137 (2014) 155-163. [13] J. Li, L. Zhou, P.C. Li, Q.S. Zhu, J.J. Gao, F.N. Gu, F.B. Su, Enhanced fluidized bed methanation over a Ni/Al2O3 catalyst for production of synthetic natural gas, Chem. Eng. J. 219 (2013) 183-189. [14] J. Liu, E.D. Wang, J. Lv, Z.H. Li, B.W. Wang, X.B. Ma, S.D. Qin, Q. Sun, Investigation of sulfur-resistant, highly active unsupported MoS2 catalysts for synthetic natural gas production from CO methanation, Fuel Process. Technol. 110 (2013) 249-257. [15] Z.P. Liu, Y. Xu, Z.H. Li, B.W. Wang, W.H. Wang, X.B. Ma, R.J. Liu, Sulfur-resistant methanation over MoO3/CeO2-ZrO2 catalyst: influence of Ce-addition methods, J. Energy Chem. 28 (2019) 31-38. [16] S.D. Qin, J.B. Li, J.Y. Long, X. Yang, P. Miao, Promotion effect of cerium on Mo/Al2O3 catalyst for methanation, Appl. Catal. A Gen. 598 (2020) 117559. [17] K. Stangeland, D. Kalai, H.L. Li, Z.X. Yu, CO2 methanation: the effect of catalysts and reaction conditions, Energy Procedia 105 (2017) 2022-2027. [18] Z.L. Li, Y.Z. Qu, J.J. Wang, H.L. Liu, M.R. Li, S. Miao, C. Li, Highly selective conversion of carbon dioxide to aromatics over tandem catalysts, Joule 3 (2) (2019) 570-583. [19] J. Wang, W. Liu, G. Luo, Z.J. Li, C. Zhao, H.R. Zhang, M.Z. Zhu, Q. Xu, X.Q. Wang, C.M. Zhao, Y.T. Qu, Z.K. Yang, T. Yao, Y.F. Li, Y. Lin, Y.E. Wu, Y.D. Li, Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction, Energy Environ. Sci. 11 (12) (2018) 3375-3379. [20] G.P. Vissokov, Plasma-chemical preparation of nanostructured catalysts for low-temperature steam conversion of carbon monoxide: catalytic activity, Catal. Today 89 (1-2) (2004) 223-231. [21] M. Georgieva, G. Vissokov, I. Grancharov, Physical-chemical characterization of nanodispersed powders produced by a plasma-chemical technique, Plasma Sci. Technol. 9 (3) (2007) 273-279. [22] S. Chen, H.Q. Wang, F. Dong, Activation and characterization of environmental catalysts in plasma-catalysis: Status and challenges, J. Hazard. Mater. 427 (2022) 128150. [23] J. Kruszelnicki, K.W. Engeling, J.E. Foster, M.J. Kushner, Interactions between atmospheric pressure plasmas and metallic catalyst particles in packed bed reactors, J. Phys. D: Appl. Phys. 54 (10) (2021) 104001. [24] A. Nemati Tamar, T. Hamzehlouyan, M.R. Khani, M. Alihoseini, B. Shokri, Synergistic effects of plasma and catalyst in formaldehyde conversion over a Ni/α-Al2O3 catalyst in a dielectric barrier discharge reactor, Results Eng. 17 (2023) 100997. [25] Z.P. Ye, L. Zhao, A. Nikiforov, J.M. Giraudon, Y. Chen, J.D. Wang, X. Tu, A review of the advances in catalyst modification using nonthermal plasma: Process, Mechanism and Applications, Adv. Colloid Interface Sci. 308 (2022) 102755. [26] M.H. Jiang, B.W. Wang, J. Lv, H.Y. Wang, Z.H. Li, X.B. Ma, S.D. Qin, Q. Sun, Effect of sulfidation temperature on the catalytic activity of MoO3/CeO2-Al2O3 toward sulfur-resistant methanation, Appl. Catal. A Gen. 466 (2013) 224-232. [27] H.R. Wu, S.L. Xiong, C.J. Liu, Preparation of In2O3/ZrO2 catalyst via DBD plasma decomposition of Zr(OH)4 for CO2 hydrogenation to methanol, Catal. Today 423 (2023) 114024. [28] N. Ullah, M. Su, Y.W. Yang, Z.H. Li, Enhanced CO2 hydrogenation to light hydrocarbons on Ni-based catalyst by DBD plasma, Int. J. Hydrog. Energy 48 (57) (2023) 21735-21751. [29] C.J. Liu, M.Y. Li, J.Q. Wang, X.T. Zhou, Q.T. Guo, J.M. Yan, Y.Z. Li, Plasma methods for preparing green catalysts: Current status and perspective, Chin. J. Catal. 37 (3) (2016) 340-348. [30] J. Werther, E.U. Hartge, S. Heinrich, Fluidized-bed reactors-status and some development perspectives, Chem. Ing. Tech. 86 (12) (2014) 2022-2038. [31] X.Z. Chen, H.H. Kim, T. Nozaki, Plasma catalytic technology for CH4 and CO2 conversion: a review highlighting fluidized-bed plasma reactor, Plasma Process. Polym. 21 (1) (2024) 2200207. [32] T. Kroker, T. Kolb, A. Schenk, K. Krawczyk, M. Mlotek, K.H. Gericke, Catalytic conversion of simulated biogas mixtures to synthesis gas in a fluidized bed reactor supported by a DBD, Plasma Chem. Plasma Process. 32 (3) (2012) 565-582. [33] T. Nozaki, X.Z. Chen, D.Y. Kim, C.Y. Zhan, Combination of DBD and catalysts for CH4 and CO2 conversion: basics and applications, Plasma Chem. Plasma Process. 43 (6) (2023) 1385-1410. [34] E. Defoort, R. Bellanger, C. Batiot-Dupeyrat, E. Moreau, Ionic wind produced by a DC needle-to-plate corona discharge with a gap of 15 mm, J. Phys. D: Appl. Phys. 53 (17) (2020) 175202. [35] S.S. Xu, S. Chansai, Y. Shao, S.J. Xu, Y.C. Wang, S. Haigh, Y.B. Mu, Y.L. Jiao, C.E. Stere, H.H. Chen, X.L. Fan, C. Hardacre, Mechanistic study of non-thermal plasma assisted CO2 hydrogenation over Ru supported on MgAl layered double hydroxide, Appl. Catal. B Environ. 268 (2020) 118752. [36] X.Z. Chen, Z.R. Sheng, S. Murata, S. Zen, H.H. Kim, T. Nozaki, CH4 dry reforming in fluidized-bed plasma reactor enabling enhanced plasma-catalyst coupling, J. CO2 Util. 54 (2021) 101771. [37] S. Zen, N. Takeuchi, Y. Teramoto, Ammonia synthesis using atmospheric pressure fluidized bed plasma, J. Phys. D: Appl. Phys. 57 (11) (2024) 115203. [38] S.J. Li, X.Q. Dang, X. Yu, R. Yu, G. Abbasd, Q. Zhang, High energy efficient degradation of toluene using a novel double dielectric barrier discharge reactor, J. Hazard. Mater. 400 (2020) 123259. [39] B.W. Wang, J.Z. Kong, X.Y. Li, Characteristics of integral plasma-fluidized bed and preparation of Mo-based catalysts for sulfur-resistant methanation, React. Kinet. Mech. Catal. 138 (1) (2025) 285-302. [40] J. Jang, H. Nishiyama, Discharge study of argon DC arc jet assisted by DBD plasma for metal surface treatment, IEEE Trans. Plasma Sci. 43 (10) (2015) 3688-3694. [41] D. Danhua Mei, D. Xin Tu, Atmospheric pressure non-thermal plasma activation of CO2 in a packed-bed dielectric barrier discharge reactor, ChemPhysChem 18 (22) (2017) 3253-3259. [42] V.P. Pakharukova, D.A. Yatsenko, E.Y. Gerasimov, E. Vlasova, G.A. Bukhtiyarova, S.V. Tsybulya, Total scattering Debye function analysis: effective approach for structural studies of supported MoS2-based hydrotreating catalysts, Ind. Eng. Chem. Res. 59 (23) (2020) 10914-10922. [43] H.Y. Wang, Z.H. Li, B.W. Wang, X.B. Ma, S.D. Qin, S.L. Sun, Q. Sun, Precursor effect on catalytic properties of Mo-based catalyst for sulfur-resistant methanation, Korean J. Chem. Eng. 31 (12) (2014) 2157-2161. [44] B.W. Wang, D.J. Meng, W.H. Wang, Z.H. Li, X.B. Ma, Effect of citric acid addition on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation, J. Fuel Chem. Technol. 44 (12) (2016) 1479-1484. [45] S. Imamura, H. Sasaki, M. Shono, H. Kanai, Structure of molybdenum supported on α-, γ-, and Y-aluminas in relation to its epoxidation activity, J. Catal. 177 (1) (1998) 72-81. [46] X.H. Yang, Y.F. Zuo, P.F. Feng, N. Wang, J. Li, Y.Q. Wang, G.H. Zhang, K.C. Chou, Mechanism and kinetics of decomposition reaction of ultrafine ammonium molybdate for preparing ultrafine MoO3 powder, Mater. Chem. Phys. 302 (2023) 127760. [47] Z.L. Yin, X.H. Li, Q.Y. Chen, Study on the kinetics of the thermal decompositions of ammonium molybdates, Thermochim. Acta 352 (2000) 107-110. [48] T.N. Zhou, H.L. Yin, Y.Q. Liu, S.N. Han, Y.M. Chai, C.G. Liu, Effect of phosphorus content on the active phase structure of NiMoP/Al2O3 catalyst, J. Fuel Chem. Technol. 38 (1) (2010) 69-74. [49] P. Afanasiev, The influence of reducing and sulfiding conditions on the properties of unsupported MoS2-based catalysts, J. Catal. 269 (2) (2010) 269-280. [50] Z.H. Li, K. Zhang, W.H. Wang, B.W. Wang, X.B. Ma, DFT study into the reaction mechanism of CO methanation over pure MoS2, Int. J. Quantum Chem. 118 (16) (2018) e25643. [51] Z.H. Li, Z.J. Yin, W.H. Wang, Y. Tian, B.W. Wang, X.B. Ma, The effect of citric acid on the catalytic activity of nano-sized MoS2 toward sulfur-resistant CO methanation, Appl. Organomet. Chem. 32 (5) (2018) e4339. [52] S. Cristol, J.F. Paul, E. Payen, D. Bougeard, F. Hutschka, S. Clemendot, DBT derivatives adsorption over molybdenum sulfide catalysts: a theoretical study, J. Catal. 224 (1) (2004) 138-147. [53] C. Liu, W.H. Wang, Y. Xu, Z.H. Li, B.W. Wang, X.B. Ma, Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst, Appl. Surf. Sci. 441 (2018) 482-490. [54] B.W. Wang, T.T. Wang, J. Zhao, Z.H. Li, Y. Xu, X.B. Ma, Effect of phosphorus precursor on the catalytic performance of metal phosphides in the methanation of syngas, J. Fuel Chem. Technol. 49 (7) (2021) 952-958. |
| [1] | Mengting Chen, Minjie Zhu, Tingyu Zhou, Qifeng Zhong, Meihua Zhang, Yingxin Liu, Zuojun Wei. Enhanced activity and stability of SAPO-5 zeolite supported RuMn catalyst for aqueous-phase selective hydrodeoxygenation of guaiacol to cyclohexanol [J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 200-207. |
| [2] | Zhenhui Lv, Jianan Li, Tao Yang, Yibao Li, Chong Peng. Effect of carbon modifications on the performance of hydrogenation catalysts [J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 270-276. |
| [3] | Yaqi Qu, Hualiang An, Xinqiang Zhao, Yanji Wang. Heterogeneously catalyzed self-condensation of n-butanal [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 89-99. |
| [4] | Xiangli Liu, Yiqing Zeng, Jiahao Chen, Zhaoxiang Zhong, Weihong Xing. Research progress on the monolithic catalyst for hydrogenation of CO2 to methane [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 184-197. |
| [5] | Jiayi Xu, Shuang Li, Wei Zhang, Guangli Xiu. Fe, N-decorated carbocatalyst based on Fe-MOF as PDS activator for efficient sulfadiazine degradation: An electron transfer process [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 248-260. |
| [6] | Hu Wang, Qingrong Zheng. Structural modification and heat transfer enhancement on HKUST-1 for adsorbed natural gas [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 109-119. |
| [7] | Yiyang Qiu, Chong Liu, Xueting Meng, Yuesen Liu, Jiangtao Fan, Guojun Lan, Ying Li. Synergistic effect between nitrogen-doped sites and metal chloride for carbon supported extra-low mercury catalysts in acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 145-154. |
| [8] | Zhe Ding, Li Guo, Fang Bai, Chao Hua, Ping Lu, Jinyi Chen. Toward the rational design for low-temperature hydrogenation of silicon tetrachloride: Mechanism and data-driven interpretable descriptor [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 172-184. |
| [9] | Zhiwei Zhao, Yating Wang, Yuhao Tang, Xiaoqing Wang, Feifei Zhang, Jiangfeng Yang. Copper-based metal–organic framework with two methane traps for efficient CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 234-240. |
| [10] | Gang Hu, Qinqin Wang, Mingyuan Zhu, Lihua Kang. Heteropolyacid hosted to nano-silica catalyst for the oxidation of methacrolein [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 150-162. |
| [11] | Yin Zhang, Shuai Yan, Zihong Xia, Caixia Chen, Xuan Qu, Jicheng Bi. CFD investigation in the temperature effect on coal catalytic hydrogasification in the pressurized bubbling fluidized bed [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 205-217. |
| [12] | Chen Chen, Zeming Yan, Zhuoli Ma, Dianjie Ma, Shijun Xing, Wenping Li, Jiazhi Yang, Qiaofeng Han. Magnetic Fe3O4 nanoparticles supported on carbonized corncob as heterogeneous Fenton catalyst for efficient degradation of methyl orange [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 144-155. |
| [13] | Junzhe Xu, Shuang Liu, Lin Li, Xian Qin, Ruixin Qu, Jinguo Wang, Di Liu, Gaixia Wei. Rational design of nitrogen-doped carbon for palladium catalysts in hydrogenation of hydrazo compounds [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 156-166. |
| [14] | Qiannan Wang, Aaron S. Pittman, Yan Cao. High-performance red mud as an electrocatalyst for nitrate reduction toward ammonia synthesis [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 195-202. |
| [15] | Jianzhi Wang, Xugen Li, Cheng Zhang, Yuan Pu, Jiawu Liu, Jie Liu, Yanping Liu, Xiao Lin, Faquan Yu. Polygonal mesopores microflower catalysts for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene to 2-nitro-4-methylsulfonylbenzoic acid in a continuous-flow microreactor [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 212-221. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
