[1] X. Hu, Z.J. Zhang, X. Zhang, Y. Wang, X. Yang, X. Wang, M. Fayena-Greenstein, H.A. Yehezkel, S. Langford, D. Zhou, B.H. Li, G.X. Wang, D. Aurbach, External-pressure-electrochemistry coupling in solid-state lithium metal batteries, Nat. Rev. Mater. 9 (2024) 305-320. [2] F. Degen, M. Winter, D. Bendig, J. Tubke, Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells, Nat. Energy 8 (2023) 1284-1295. [3] B. Tadesse, F. Makuei, B. Albijanic, L. Dyer, The beneficiation of lithium minerals from hard rock ores: A review, Miner. Eng. 131 (2019) 170-184. [4] R.M. DuChanois, A fast evaporative method for extracting lithium from brines, Nat. Water 1 (2023) 754-755. [5] Y. Sun, Q. Wang, Y.H. Wang, R.P. Yun, X. Xiang, Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine, Sep. Purif. Technol. 256 (2021) 117807. [6] X. Chen, M.Q. Yang, S.X. Zheng, F. Temprano-Coleto, Q. Dong, G.M. Cheng, N. Yao, H.A. Stone, L.B. Hu, Z.J. Ren, Spatially separated crystallization for selective lithium extraction from saline water, Nat. Water 1 (2023) 808-817. [7] B.L. Li, J. Wu, J. Lu, Life cycle assessment considering water-energy nexus for lithium nanofiltration extraction technique, J. Clean. Prod. 261 (2020) 121152. [8] Y.J. Zhao, X. Xiang, M. Wang, H.Y. Wang, Y. Li, J.L. Li, H.J. Yang, Preparation of LiOH through BMED process from lithium-containing solutions: Effects of coexisting ions and competition between Na+ and Li+, Desalination 512 (2021) 115126. [9] S.Y. Sun, L.J. Cai, X.Y. Nie, X.F. Song, J.G. Yu, Separation of magnesium and lithium from brine using a Desal nanofiltration membrane, J. Water Process. Eng. 7 (2015) 210-217. [10] W.H. Chen, C.Y. Wu, H.F. Yu, Y.J. Chen, S.H. Zheng, Effect of calcined MgO-rich byproduct from the extraction of Li2CO3 on the performance of magnesium phosphate cement, J. Adv. Concr. Technol. 15 (12) (2017) 749-759. [11] W.X. Zheng, J.M. Dong, Y. Li, J. Wen, C.G. Chang, B.L. Li, Y.R. Li, Preparation technology and microstructural changes of low-activity magnesium oxide based on salt lake bischofite, Powder Technol. 433 (2024) 119248. [12] Y.S. Tan, H.F. Yu, Y. Li, C.Y. Wu, J.M. Dong, J. Wen, Magnesium potassium phosphate cement prepared by the byproduct of magnesium oxide after producing Li2CO3 from salt lakes, Ceram. Int. 40 (8) (2014) 13543-13551. [13] W.X. Zheng, J.M. Dong, J. Wen, C.G. Chang, X.Y. Xiao, Effects of water-to-cement ratios on the properties of magnesium potassium phosphate cement prepared with lithium-extracted magnesium residue, Appl. Sci. 11 (9) (2021) 4193. [14] J.M. Dong, W.X. Zheng, C.G. Chang, J. Wen, X.Y. Xiao, Function and effect of borax on magnesium phosphate cement prepared by magnesium slag after salt lake lithium extraction, Constr. Build. Mater. 366 (2023) 130280. [15] X. Sun, H. Hao, C. Galeazzi, T. Fishman, D.Y. Xun, M. Ericsson, G. Liu, I.L. Hsieh, Z.W. Liu, F.Q. Zhao, Reducing supply risk of critical materials for clean energy via foreign direct investment, Nat. Sustain. 7 (2024) 672-681. [16] M.L. Vera, W.R. Torres, C.I. Galli, A. Chagnes, V. Flexer, Environmental impact of direct lithium extraction from brines, Nat. Rev. Earth Environ. 4 (3) (2023) 149-165. [17] A. Alessia, B. Alessandro, V.G. Maria, V.A. Carlos, B. Francesca, Challenges for sustainable lithium supply: A critical review, J. Clean. Prod. 300 (2021) 126954. [18] H.W. Li, Y. Wang, T.Y. Li, X.K. Ren, J.X. Wang, Z. Wang, S. Zhao, Nanofiltration membrane with crown ether as exclusive Li+ transport channels achieving efficient extraction of lithium from salt lake brine, Chem. Eng. J. 438 (2022) 135658. [19] X.S. Sun, X.Z. Wang, Y.L. Wan, Y.F. Guo, T.L. Deng, X.P. Yu, Synthesis of functional ionic liquids with high extraction rate and electroconductivity for lithium-magnesium separation and metallic magnesium production from salt lake brine, Chem. Eng. J. 452 (2023) 139610. [20] Q.Y. Wang, M. Li, B. Zhao, B.Y. Meng, W.T. Chen, Z.K. Jiang, X. He, B. Li, X.Y. Li, L. Lin, Electricity facilitates the lithium sorption from salt-lake brine by H3LiTi5O12 nanoparticles: Kinetics, selectivity and mechanism, Chem. Eng. J. 471 (2023) 144532. [21] S.X. Zhang, X. Wei, X. Cao, M.W. Peng, M. Wang, L. Jiang, J. Jin, Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine, Nat. Commun. 15 (1) (2024) 238. [22] S.S. Xu, J.F. Song, Q.Y. Bi, Q. Chen, W.M. Zhang, Z.X. Qian, L. Zhang, S.A. Xu, N. Tang, T. He, Extraction of lithium from Chinese salt-lake brines by membranes: Design and practice, J. Membr. Sci. 635 (2021) 119441. [23] H.B. Dong, Z.P. Du, Y.H. Zhao, D.P. Zhou, Preparation of surface modified nano-Mg(OH)2 via precipitation method, Powder Technol. 198 (3) (2010) 325-329. [24] C. Ma, J.F. Zhang, Y.T. Liu, L.Q. Sun, Q.F. Liu, Integrated separation of precipitation and three-liquid-phase extraction for boron, lithium and magnesium from salt lake brine with high magnesium-lithium ratio, Sep. Purif. Technol. 347 (2024) 127541. [25] D.X. Wang, J.Y. Zhu, R.H. Wang, Assessment of magnesium potassium phosphate cement for waste sludge solidification: Macro- and micro-analysis, J. Clean. Prod. 294 (2021) 126365. [26] H. Feng, L.L. Li, W.Q. Wang, Z.Q. Cheng, D.Y. Gao, Mechanical properties of high ductility hybrid fibres reinforced magnesium phosphate cement-based composites, Compos. Struct. 284 (2022) 115219. [27] M. Aminul Haque, B. Chen, Y.T. Liu, S. Farasat Ali Shah, M.R. Ahmad, Improvement of physico-mechanical and microstructural properties of magnesium phosphate cement composites comprising with Phosphogypsum, J. Clean. Prod. 261 (2020) 121268. [28] M.A. Haque, B. Chen, Y. Maierdan, Influence of supplementary materials on the early age hydration reactions and microstructural progress of magnesium phosphate cement matrices, J. Clean. Prod. 333 (2022) 130086. [29] C.Z. Li, J.C. Zhu, C.W. Yan, X.K. Meng, Experimental research on saline soil erosion resistance of magnesium phosphate cement pastes, Constr. Build. Mater. 341 (2022) 127752. [30] H.L. Jiang, J.W. Zhang, T. Li, Y. Wang, Y.L. Liu, H. De Backer, Feasibility analysis of magnesium phosphate cement as a repair material for base slab of China railway track system II ballastless track, Constr. Build. Mater. 326 (2022) 126821. [31] M. De Campos, C.A. Davy, N. Djelal, M. Rivenet, J. Garcia, Development of a stoichiometric magnesium potassium phosphate cement (MKPC) for the immobilization of powdered minerals, Cem. Concr. Res. 142 (2021) 106346. [32] K. Gu, B. Chen, P. Yan, J.M. Wang, Recycling of phosphate tailings and acid wastewater from phosphorus chemical industrial chain to prepare a high value-added magnesium oxysulfate cement, J. Clean. Prod. 369 (2022) 133343. [33] X. Cao, W.B. Wang, R. Ma, S.C. Sun, J.H. Lin, Solidification/stabilization of Pb2+ and Zn2+ in the sludge incineration residue-based magnesium potassium phosphate cement: Physical and chemical mechanisms and competition between coexisting ions, Environ. Pollut. 253 (2019) 171-180. [34] L.J. Gardner, C.L. Corkhill, S.A. Walling, J.E. Vigor, C.A. Murray, C.C. Tang, J.L. Provis, N.C. Hyatt, Early age hydration and application of blended magnesium potassium phosphate cements for reduced corrosion of reactive metals, Cem. Concr. Res. 143 (2021) 106375. [35] Y.S. Tan, Z.B. Zhang, J. Wen, J.M. Dong, C.Y. Wu, Y. Li, D.Y. Yang, H.F. Yu, Preparation of magnesium potassium phosphate cement using by-product MgO from Qarhan Salt Lake for low-carbon and sustainable cement production, Environ. Res. 214 (Pt 2) (2022) 113912. [36] P. Dong, M.R. Ahmad, B. Chen, M.J. Munir, S.M. Saleem Kazmi, Preparation and study of magnesium ammonium phosphate cement from waste lithium slag, J. Clean. Prod. 316 (2021) 128371. [37] A. Viani, M. Perez-Estebanez, S. Pollastri, A.F. Gualtieri, In situ synchrotron powder diffraction study of the setting reaction kinetics of magnesium-potassium phosphate cements, Cem. Concr. Res. 79 (2016) 344-352. [38] A. Viani, P. Macova, M. Perez-Estebanez, Nucleation of amorphous precursor in magnesium phosphate cements: Clues to the reaction pathway, Mater. Lett. 304 (2021) 130677. [39] J. Shi, J.G. Zhao, H. Chen, P.K. Hou, S. Kawashima, J.H. Qin, X.M. Zhou, J.S. Qian, X. Cheng, Sulfuric acid-resistance performances of magnesium phosphate cements: Macro-properties, mineralogy and microstructure evolutions, Cem. Concr. Res. 157 (2022) 106830. [40] S.J. Fan, B. Chen, Experimental study of phosphate salts influencing properties of magnesium phosphate cement, Constr. Build. Mater. 65 (2014) 480-486. [41] Z.Y. Lu, D.S. Hou, H.Y. Ma, T.Y. Fan, Z.J. Li, Effects of graphene oxide on the properties and microstructures of the magnesium potassium phosphate cement paste, Constr. Build. Mater. 119 (2016) 107-112. [42] L.W. Mo, L.M. Lv, M. Deng, J.S. Qian, Influence of fly ash and metakaolin on the microstructure and compressive strength of magnesium potassium phosphate cement paste, Cem. Concr. Res. 111 (2018) 116-129. [43] N. Yang, C.J. Shi, J.M. Yang, Y. Chang, Research progresses in magnesium phosphate cement-based materials, J. Mater. Civ. Eng. 26 (10) (2014) 04014071. [44] E. Soudee, J. Pera, Mechanism of setting reaction in magnesia-phosphate cements, Cem. Concr. Res. 30 (2) (2000) 315-321. [45] A.J. Wang, J. Zhang, J.M. Li, A.B. Ma, L.T. Liu, Effect of liquid-to-solid ratios on the properties of magnesium phosphate chemically bonded ceramics, Mater. Sci. Eng. C Mater. Biol. Appl. 33 (5) (2013) 2508-2512. [46] M.R. Ahmad, B. Chen, S. Yousefi Oderji, M. Mohsan, Development of a new bio-composite for building insulation and structural purpose using corn stalk and magnesium phosphate cement, Energy Build. 173 (2018) 719-733. [47] Z. Ding, B.Q. Dong, F. Xing, N.X. Han, Z.J. Li, Cementing mechanism of potassium phosphate based magnesium phosphate cement, Ceram. Int. 38 (8) (2012) 6281-6288. [48] L.M. Lv, P. Huang, L.W. Mo, M. Deng, J.S. Qian, A.G. Wang, Properties of magnesium potassium phosphate cement pastes exposed to water curing: a comparison study on the influences of fly ash and metakaolin, Constr. Build. Mater. 203 (2019) 589-600. [49] X. Wang, X. Hu, J.M. Yang, L.L. Chong, C.J. Shi, Research progress on interfacial bonding between magnesium phosphate cement and steel: a review, Constr. Build. Mater. 342 (2022) 127925. [50] J.H. Qin, J.S. Qian, X.B. Dai, C. You, H.Y. Ma, Z. Li, Effect of water content on microstructure and properties of magnesium potassium phosphate cement pastes with different magnesia-to-phosphate ratios, J. Am. Ceram. Soc. 104 (6) (2021) 2799-2819. [51] V.M. Sglavo, F. De Genua, A. Conci, R. Ceccato, R. Cavallini, Influence of curing temperature on the evolution of magnesium oxychloride cement, J. Mater. Sci. 46 (20) (2011) 6726-6733. [52] Y. LI, J.M. Dong, X.Y. Xiao, W.X. Zheng, J. Wen, C.G. Chang, Green preparation of magnesia sand and magnesium phosphate cement by utilizing common elements in salt lake as sintering aid, Journal of Salt Lake Research, 28(2) (2020) 15-25. [53] J. Zhou, B.L. Li, Y.H. Lv, W.X. Zheng, Y. Shen, J.M. Dong, Y.R. Li, Q. Wang, C.G. Chang, J. Wen, Effects of Cla2 and Ca2+ on the properties of magnesium oxysulfate cement, Constr. Build. Mater. 492 (2025) 142933. [54] T. Knudsen, On particle size distribution in cement hydration // Proceedings of 7th International Congress on the Chemistry of Cement, Vol I, Paris: 1980: p170. [55] R. Kondo, S. Ueda, Kinetics of hydration of cement // 5th Interna tional Conference on the Chemistry of Cement, Tokyo, Sess II-4, 1968: 203-208. [56] S. Graeser, W. Postl, H.B. Bojar, T. Armbruster, T. Raber, K. Ettinger, F. Walter, Struvite-(K), KMgPO46H2O, the potassium equivalent of struvite a new mineral, Eur. J. Mineral. 20 (4) (2008) 629-633. [57] B.W. Xu, F. Winnefeld, J. Kaufmann, B. Lothenbach, Influence of magnesium-to-phosphate ratio and water-to-cement ratio on hydration and properties of magnesium potassium phosphate cements, Cem. Concr. Res. 123 (2019) 105781. [58] T. Zhang, H.S. Chen, X.Y. Li, Z.G. Zhu, Hydration behavior of magnesium potassium phosphate cement and stability analysis of its hydration products through thermodynamic modeling, Cem. Concr. Res. 98 (2017) 101-110. [59] M. Le Rouzic, T. Chaussadent, G. Platret, L. Stefan, Mechanisms of k-struvite formation in magnesium phosphate cements, Cem. Concr. Res. 91 (2017) 117-122. [60] J. Egedal, W. Fox, E. Belonohy, M. Porkolab, Kinetic simulation of the VTF magnetic reconnection experiment, Comput. Phys. Commun. 164 (1-3) (2004) 29-33. [61] X.C. Fu, W.X. Shen, T.Y. Yao, Physical Chemistry, Fourth edition, Peking: Higher Education Press, (2003) 505-1090. |