Chinese Journal of Chemical Engineering ›› 2025, Vol. 85 ›› Issue (9): 189-205.DOI: 10.1016/j.cjche.2025.05.017
Previous Articles Next Articles
Hansheng Wang1, Xintian Luo1, Kaixuan Chen1, Benduan Xiao2, Xu Zhang2, Qingjun Meng2, Huibing He1, Jing Xu1,3, Yong Jin2
Received:2025-02-26
Revised:2025-05-13
Accepted:2025-05-14
Online:2025-06-13
Published:2025-09-28
Contact:
Huibing He,E-mail:huibinghe@gxu.edu.cn;Jing Xu,E-mail:xujing@ecust.edu.cn;Yong Jin,E-mail:jinyong@shhuayi.com
Supported by:Hansheng Wang1, Xintian Luo1, Kaixuan Chen1, Benduan Xiao2, Xu Zhang2, Qingjun Meng2, Huibing He1, Jing Xu1,3, Yong Jin2
通讯作者:
Huibing He,E-mail:huibinghe@gxu.edu.cn;Jing Xu,E-mail:xujing@ecust.edu.cn;Yong Jin,E-mail:jinyong@shhuayi.com
基金资助:Hansheng Wang, Xintian Luo, Kaixuan Chen, Benduan Xiao, Xu Zhang, Qingjun Meng, Huibing He, Jing Xu, Yong Jin. Research progress on the copper-based catalyst design for dimethyl oxalate hydrogenation to ethylene glycol[J]. Chinese Journal of Chemical Engineering, 2025, 85(9): 189-205.
Hansheng Wang, Xintian Luo, Kaixuan Chen, Benduan Xiao, Xu Zhang, Qingjun Meng, Huibing He, Jing Xu, Yong Jin. Research progress on the copper-based catalyst design for dimethyl oxalate hydrogenation to ethylene glycol[J]. 中国化学工程学报, 2025, 85(9): 189-205.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.05.017
| [1] H.R. Yue, Y.J. Zhao, X.B. Ma, J.L. Gong, Ethylene glycol: properties, synthesis, and applications, Chem. Soc. Rev. 41 (11) (2012) 4218-4244. [2] H.J. Huang, B. Wang, Y. Wang, Y.J. Zhao, S.P. Wang, X.B. Ma, Partial hydrogenation of dimethyl oxalate on Cu/SiO2 catalyst modified by sodium silicate, Catal. Today 358 (2020) 68-73. [3] M.L. Wang, D.W. Yao, A.T. Li, Y.W. Yang, J. Lv, S.Y. Huang, Y. Wang, X.B. Ma, Enhanced selectivity and stability of Cu/SiO2 catalysts for dimethyl oxalate hydrogenation to ethylene glycol by using silane coupling agents for surface modification, Ind. Eng. Chem. Res. 59 (20) (2020) 9414-9422. [4] Z. He, H.Q. Lin, P. He, Y.Z. Yuan, Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 277 (1) (2011) 54-63. [5] X.P. Wang, M. Chen, X.K. Chen, R.H. Lin, H.J. Zhu, C.Q. Huang, W.S. Yang, Y. Tan, S.S. Wang, Z.N. Du, Y.J. Ding, Constructing copper-zinc interface for selective hydrogenation of dimethyl oxalate, J. Catal. 383 (2020) 254-263. [6] X.B. Yu, T.A. Vest, N. Gleason-Boure, S.G. Karakalos, G.L. Tate, M. Burkholder, J.R. Monnier, C.T. Williams, Enhanced hydrogenation of dimethyl oxalate to ethylene glycol over indium promoted Cu/SiO2, J. Catal. 380 (2019) 289-296. [7] J. Ding, J. Zhang, C. Zhang, K.F. Liu, H.C. Xiao, F.H. Kong, J.G. Chen, Hydrogenation of diethyl oxalate over Cu/SiO2 catalyst with enhanced activity and stability: Contribution of the spatial restriction by varied pores of support, Appl. Catal. A Gen. 508 (2015) 68-79. [8] G.Q. Cui, X.Y. Meng, X. Zhang, W.L. Wang, S.L. Xu, Y.C. Ye, K.J. Tang, W.M. Wang, J.H. Zhu, M. Wei, D.G. Evans, X. Duan, Low-temperature hydrogenation of dimethyl oxalate to ethylene glycol via ternary synergistic catalysis of Cu and acid-base sites, Appl. Catal. B Environ. 248 (2019) 394-404. [9] Z. Chen, J. Zhang, M. Abbas, Y.Y. Xue, J.Q. Sun, K.F. Liu, J.G. Chen, Effect of configuration addition of precursors on structure and catalysis of Cu/SiO2 catalysts prepared by ammonia evaporation-hydrothermal method, Ind. Eng. Chem. Res. 56 (33) (2017) 9285-9292. [10] L.M. He, H.Y. Cheng, G.F. Liang, Y.C. Yu, F.Y. Zhao, Effect of structure of CuO/ZnO/Al2O3 composites on catalytic performance for hydrogenation of fatty acid ester, Appl. Catal. A Gen. 452 (2013) 88-93. [11] C. Wen, Y.Y. Cui, X. Chen, B.N. Zong, W.L. Dai, Reaction temperature controlled selective hydrogenation of dimethyl oxalate to methyl glycolate and ethylene glycol over copper-hydroxyapatite catalysts, Appl. Catal. B Environ. 162 (2015) 483-493. [12] P.P. Ai, M.H. Tan, P. Reubroycharoen, Y. Wang, X.B. Feng, G.G. Liu, G.H. Yang, N. Tsubaki, Probing the promotional roles of cerium in the structure and performance of Cu/SiO2 catalysts for ethanol production, Catal. Sci. Technol. 8 (24) (2018) 6441-6451. [13] Y. Wang, Y.L. Shen, Y.J. Zhao, J. Lv, S.P. Wang, X.B. Ma, Insight into the balancing effect of active Cu species for hydrogenation of carbon-oxygen bonds, ACS Catal. 5 (10) (2015) 6200-6208. [14] J.W. An, X.H. Wang, J.X. Zhao, S.H. Jiang, Y.H. Quan, Y.L. Pei, M.M. Wu, J. Ren, Density-functional theory study on hydrogenation of dimethyl oxalate to methyl glycolate over copper catalyst: Effect of copper valence state, Mol. Catal. 482 (2020) 110667. [15] W.Q. Yan, J.B. Zhang, R.J. Zhou, Y.Q. Cao, Y.A. Zhu, J.H. Zhou, Z.J. Sui, W. Li, D. Chen, X.G. Zhou, Identification of synergistic actions between Cu0 and Cu+ sites in hydrogenation of dimethyl oxalate from microkinetic analysis, Ind. Eng. Chem. Res. 59 (52) (2020) 22451-22459. [16] J. Ding, T. Popa, J.K. Tang, K.A.M. Gasem, M.H. Fan, Q. Zhong, Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol, Appl. Catal. B Environ. 209 (2017) 530-542. [17] M. Mokhtar, C. Ohlinger, J.H. Schlander, T. Turek, Hydrogenolysis of dimethyl maleate on Cu/ZnO/Al2O3 catalysts, Chem. Eng. Technol. 24 (4) (2001) 423-426. [18] X.Y. Guo, A.Y. Yin, W.L. Dai, K.N. Fan, One pot synthesis of ultra-high copper contented Cu/SBA-15 material as excellent catalyst in the hydrogenation of dimethyl oxalate to ethylene glycol, Catal. Lett. 132 (1) (2009) 22-27. [19] Y.Y. Zhu, S.R. Wang, L.J. Zhu, X.L. Ge, X.B. Li, Z.Y. Luo, The influence of copper particle dispersion in Cu/SiO2 catalysts on the hydrogenation synthesis of ethylene glycol, Catal. Lett. 135 (3) (2010) 275-281. [20] Y.J. Zhao, S.M. Li, Y. Wang, B. Shan, J. Zhang, S.P. Wang, X.B. Ma, Efficient tuning of surface copper species of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol, Chem. Eng. J. 313 (2017) 759-768. [21] L.F. Chen, P.J. Guo, M.H. Qiao, S.R. Yan, H.X. Li, W. Shen, H.L. Xu, K.N. Fan, Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 257 (1) (2008) 172-180. [22] S.M. Li, Y. Wang, J. Zhang, S.P. Wang, Y. Xu, Y.J. Zhao, X.B. Ma, Kinetics study of hydrogenation of dimethyl oxalate over Cu/SiO2 catalyst, Ind. Eng. Chem. Res. 54 (4) (2015) 1243-1250. [23] X.L. Zheng, H.Q. Lin, J.W. Zheng, H. Ariga, K. Asakura, Y.Z. Yuan, Pt-promoted Cu/SBA-15 catalysts with excellent performance for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol, Top. Catal. 57 (10) (2014) 1015-1025. [24] Y. Huang, H. Ariga, X.L. Zheng, X.P. Duan, S. Takakusagi, K. Asakura, Y.Z. Yuan, Silver-modulated SiO2-supported copper catalysts for selective hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 307 (2013) 74-83. [25] X.G. San, X.H. Gong, Y.M. Lu, J.H. Xu, L.M. He, D. Meng, G.S. Wang, J. Qi, Q. Jin, Anchoring Cu species over SiO2 for hydrogenation of dimethyl oxalate to ethylene glycol, Catalysts 12 (11) (2022) 1326. [26] A.Y. Yin, J.W. Qu, X.Y. Guo, W.L. Dai, K.N. Fan, The influence of B-doping on the catalytic performance of Cu/HMS catalyst for the hydrogenation of dimethyloxalate, Appl. Catal. A Gen. 400 (1-2) (2011) 39-47. [27] Y. Jiang, Q. Bao, W.Y. Gui, Y.F. Wu, X.F. Liu, L. Zhang, B. Zheng, Z.L. Wang, A highly effective Cu/ZnO/Al2O3 catalyst for hydrogenation of methyl benzoate to benzyl alcohol in methanol solution, Catal. Lett. 149 (5) (2019) 1359-1367. [28] Y.J. Zhao, Y.Q. Zhang, Y. Wang, J. Zhang, Y. Xu, S.P. Wang, X.B. Ma, Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation, Appl. Catal. A Gen. 539 (2017) 59-69. [29] Z.P. Lu, H.B. Yin, A.L. Wang, J. Hu, W.P. Xue, H.X. Yin, S.X. Liu, Hydrogenation of ethyl acetate to ethanol over Cu/ZnO/MO x (MO x = SiO2, Al2 O3, and ZrO 2) catalysts, J. Ind. Eng. Chem. 37 (2016) 208-215. [30] M. Cargnello, V.V.T. Doan-Nguyen, T.R. Gordon, R.E. Diaz, E.A. Stach, R.J. Gorte, P. Fornasiero, C.B. Murray, Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts, Science 341 (6147) (2013) 771-773. [31] B. Wang, C. Wen, Y.Y. Cui, X. Chen, Y. Dong, W.L. Dai, Remarkable crystal phase effect of Cu/TiO2 catalysts on the selective hydrogenation of dimethyl oxalate, RSC Adv. 5 (37) (2015) 29040-29047. [32] Y.J. Zhang, N. Zheng, K.J. Wang, S.J. Zhang, J. Wu, Effect of copper nanoparticles dispersion on catalytic performance of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol, J. Nanomater. 2013 (1) (2013) 629375. [33] J.X. Yang, L. Lin, P. Zhang, R.P. Ye, Y.H. Wang, Y.Y. Qin, Z.F. Zhou, Y.G. Yao, Facile and optimized ion-exchange method for synthesizing low-cost and stable Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol, Ind. Eng. Chem. Res. 62 (37) (2023) 14866-14878. [34] D. Yue Wang, D. Yujun Zhao, D. Jing Lv, P. Xinbin Ma, Facile synthesis of Cu@CeO2 and its catalytic behavior for the hydrogenation of methyl acetate to ethanol, ChemCatChem 9 (12) (2017) 2085-2090. [35] P.P. Ai, D. Minghui Tan, Y. Ishikuro, Y. Hosoi, D. Guohui Yang, D. Yoshiharu Yoneyama, D. Noritatsu Tsubaki, Design of an autoreduced copper in carbon nanotube catalyst to realize the precisely selective hydrogenation of dimethyl oxalate, ChemCatChem 9 (6) (2017) 1067-1075. [36] J.Z. Shi, Y. He, K. Ma, S.Y. Tang, C.J. Liu, H.R. Yue, B. Liang, Cu active sites confined in MgAl layered double hydroxide for hydrogenation of dimethyl oxalate to ethanol, Catal. Today 365 (2021) 318-326. [37] Y. Fang, H. Sun, B. Ma, C. Zhao, K+-induced formation of granular and dense copper phyllosilicate precursor converts dimethyl oxalate to ethylene glycol in absence of H2, J. Catal. 407 (2022) 44-53. [38] P.P. Ai, H.Q. Jin, J. Li, X.D. Wang, W. Huang, Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol, Chin. J. Chem. Eng. 60 (2023) 186-193. [39] W.L. Yang, Y.J. Zhao, S.P. Wang, X.B. Ma, Formation of copper phyllosilicate in silica supported copper catalyst, Chem. Ind. Eng. 33 (1) (2016) 1-5. [40] H.R. Yue, Y.J. Zhao, S. Zhao, B. Wang, X.B. Ma, J.L. Gong, A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions, Nat. Commun. 4 (2013) 2339. [41] R.P. Ye, L. Lin, C.C. Chen, J.X. Yang, F. Li, X. Zhang, D.J. Li, Y.Y. Qin, Z.F. Zhou, Y.G. Yao, Synthesis of robust MOF-derived Cu/SiO2 catalyst with low copper loading via Sol-gel method for the dimethyl oxalate hydrogenation reaction, ACS Catal. 8 (4) (2018) 3382-3394. [42] X.B. Ma, H.W. Chi, H.R. Yue, Y.J. Zhao, Y. Xu, J. Lv, S.P. Wang, J.L. Gong, Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous Cu-MCM-41 catalysts, AlChE. J. 59 (7) (2013) 2530-2539. [43] J. Guan, X.L. Pan, X. Liu, X.H. Bao, Syngas segregation induced by confinement in carbon nanotubes: a combined first-principles and Monte Carlo study, J. Phys. Chem. C 113 (52) (2009) 21687-21692. [44] Y.N. Sun, F.Q. Meng, Q.J. Ge, J. Sun, Importance of the initial oxidation state of copper for the catalytic hydrogenation of dimethyl oxalate to ethylene glycol, ChemistryOpen 7 (12) (2018) 969-976. [45] L. Zhang, P.P. Ai, Z.H. Gao, W. Huang, Enhanced catalytic stability of Cu-based catalyst for dimethyl oxalate hydrogenation, Fuel 324 (2022) 124536. [46] J. Ding, H.M. Liu, H.Y. Fan, S.Y. Chen, Y.X. Wang, W.X. He, G.W. Yu, L.T. Ma, J.G. Chen, Effective “exfoliation” of Cu/ZrO2 by varying Cu content as high performance catalysts for dimethyl oxalate hydrogenation to ethylene glycol, Catal. Commun. 121 (2019) 62-67. [47] C.C. Chen, L. Lin, R.P. Ye, L. Huang, L.B. Zhu, Y.Y. Huang, Y.Y. Qin, Y.G. Yao, Construction of Cu-Ce composite oxides by simultaneous ammonia evaporation method to enhance catalytic performance of Ce-Cu/SiO2 catalysts for dimethyl oxalate hydrogenation, Fuel 290 (2021) 120083. [48] Y. Wang, W.L. Yang, D.W. Yao, S.P. Wang, Y. Xu, Y.J. Zhao, X.B. Ma, Effect of surface hydroxyl group of ultra-small silica on the chemical states of copper catalyst for dimethyl oxalate hydrogenation, Catal. Today 350 (2020) 127-135. [49] D. Wu, J. Zhang, Z.J. Huang, J.G. Chen, Cerium-modified copper/hexagonal mesoporous silica catalyst for efficient dimethyl oxalate hydrogenation to ethylene glycol under moderate reaction conditions, J. Fuel Chem. Technol. 51 (2) (2023) 186-196. [50] Y.X. Xu, L.X. Kong, H.J. Huang, H. Wang, X.F. Wang, S.P. Wang, Y.J. Zhao, X.B. Ma, Promotional effect of indium on Cu/SiO2 catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol, Catal. Sci. Technol. 11 (20) (2021) 6854-6865. [51] C.C. Zhang, D.H. Wang, B. Dai, Promotive effect of Sn2+ on Cu0/Cu+ ratio and stability evolution of Cu/SiO2 catalyst in the hydrogenation of dimethyl oxalate, Catalysts 7 (4) (2017) 122. [52] X.P. Kong, Z. Chen, Y.H. Wu, R.H. Wang, J.G. Chen, L.F. Ding, Synthesis of Cu-Mg/ZnO catalysts and catalysis in dimethyl oxalate hydrogenation to ethylene glycol: enhanced catalytic behavior in the presence of a Mg2+ dopant, RSC Adv. 7 (78) (2017) 49548-49561. [53] L. Huang, L. Lin, C.C. Chen, R.P. Ye, L.B. Zhu, J.X. Yang, Y.Y. Qin, J.K. Cheng, Y.G. Yao, β-Cyclodextrin promoted the formation of copper phyllosilicate on Cu-SiO2 microspheres catalysts to enhance the low-temperature hydrogenation of dimethyl oxalate, J. Catal. 413 (2022) 943-955. [54] T.Y. Li, L. Lin, C.C. Chen, R.P. Ye, L. Huang, J.X. Yang, P. Zhang, Y.Y. Qin, J.K. Cheng, Y.G. Yao, Insights into a new formation mechanism of robust Cu/SiO2 catalysts for low-temperature dimethyl oxalate hydrogenation induced by a chelating ligand of EDTA, Catalysts 12 (3) (2022) 320. [55] R.P. Ye, L. Lin, C.Q. Liu, C.C. Chen, D. Yuan-Gen Yao, One-pot synthesis of cyclodextrin-doped Cu-SiO2 catalysts for efficient hydrogenation of dimethyl oxalate to ethylene glycol, ChemCatChem 9 (24) (2017) 4587-4597. [56] R.P. Ye, L. Lin, J.X. Yang, M.L. Sun, F. Li, B. Li, Y.G. Yao, A new low-cost and effective method for enhancing the catalytic performance of Cu-SiO2 catalysts for the synthesis of ethylene glycol via the vapor-phase hydrogenation of dimethyl oxalate by coating the catalysts with dextrin, J. Catal. 350 (2017) 122-132. [57] R.P. Ye, C. Zhang, P. Zhang, L. Lin, L. Huang, Y.Y. Huang, T.Y. Li, Z.F. Zhou, R.B. Zhang, G. Feng, Y.G. Yao, Facile preparation of efficient Cu-SiO2 catalysts using a polyhydroxy molecular template to regulate surface copper species for dimethyl oxalate hydrogenation, Catal. Commun. 174 (2023) 106586. [58] X.D. Lu, G.F. Wang, Y. Yang, X.P. Kong, J.G. Chen, A boron-doped carbon aerogel-supported Cu catalyst for the selective hydrogenation of dimethyl oxalate, New J. Chem. 44 (8) (2020) 3232-3240. [59] M.L. Wang, S.X. Hou, Y.W. Yang, Z.H. Zhen, J. Lv, S.Y. Huang, Y. Wang, X.B. Ma, Surface amine species promoted Cu/SiO2 catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol, Ind. Eng. Chem. Res. 62 (27) (2023) 10399-10408. [60] P. Zhang, L. Huang, J.X. Yang, R.P. Ye, M.L. Sun, F. Li, Y.H. Wang, L. Lin, Y.G. Yao, The regulation of surface copper species coupled with ammonia-evaporation and hydrothermal aging process to enhance catalytic hydrogenation properties of Cu-SiO2 catalysts, Catal. Lett. 154 (3) (2024) 1007-1017. [61] D.L. Yang, L. Lin, R. Guo, P.Y. Zhao, W. Cheng, W.P. Yuan, Y.Y. Qin, Y.G. Yao, Bimetallic Cu-Ag/SiO2 catalysts with tunable product selectivity and enhanced low-temperature stability in the dimethyl oxalate hydrogenation, Mol. Catal. 528 (2022) 112508. [62] C.C. Zhang, D.H. Wang, M.Y. Zhu, F. Yu, B. Dai, Plasma-enhanced copper dispersion and activity performance of Cu-Ni/ZrO2 catalyst for dimethyl oxalate hydrogenation, Catal. Commun. 102 (2017) 31-34. [63] Y. Zhao, X. Kan, H.F. Yun, D.L. Wang, N. Li, G.X. Li, J.Y. Shen, Synthesis of a high surface area and highly dispersed Cu-O-Si complex oxide used for the low-temperature hydrogenation of dimethyl oxalate to ethylene glycol, Catal. Commun. 154 (2021) 106310. [64] H.F. Yun, Y. Zhao, X. Kan, G.X. Li, Effect of surface hydroxyl content of support on the activity of Cu/ZSM-5 catalyst for low-temperature hydrogenation of dimethyl oxalate to ethylene glycol, Catal. Lett. 153 (2) (2023) 364-377. [65] J. Ding, H.M. Liu, M.H. Wang, H.F. Tian, J.B. Wu, G.W. Yu, Y.X. Wang, Enhanced ethylene glycol selectivity of CuO-La2O3/ZrO2 catalyst: the role of calcination temperatures, ACS Omega 5 (43) (2020) 28212-28223. [66] Y.X. Xu, H.J. Huang, L.X. Kong, X.B. Ma, Effect of calcination temperature on the Cu-ZrO2 interfacial structure and its catalytic behavior in the hydrogenation of dimethyl oxalate, Catal. Sci. Technol. 12 (22) (2022) 6782-6794. [67] X.P. Kong, C.L. Ma, J. Zhang, J.Q. Sun, J.G. Chen, K.F. Liu, Effect of leaching temperature on structure and performance of Raney Cu catalysts for hydrogenation of dimethyl oxalate, Appl. Catal. A Gen. 509 (2016) 153-160. [68] A. Abdul Jalil, A.S. Zolkifli, S. Triwahyono, A.F. Abdul Rahman, N.N. Mohd Ghani, M.Y. Shahul Hamid, F.H. Mustapha, S.M. Izan, B. Nabgan, A. Ripin, Altering dendrimer structure of fibrous-silica-HZSM5 for enhanced product selectivity of benzene methylation, Ind. Eng. Chem. Res. 58 (2) (2019) 553-562. [69] Y.F. Zhu, Y.L. Zhu, G.Q. Ding, S.H. Zhu, H.Y. Zheng, Y.W. Li, Highly selective synthesis of ethylene glycol and ethanol via hydrogenation of dimethyl oxalate on Cu catalysts: Influence of support, Appl. Catal. A Gen. 468 (2013) 296-304. [70] H.B. Sheng, H.T. Zhang, H.F. Ma, W.X. Qian, W.Y. Ying, An effective Cu-Ag/HMS bimetallic catalyst for hydrogenation of methyl acetate to ethanol, Catal. Today 358 (2020) 122-128. [71] A.Y. Yin, X.Y. Guo, W.L. Dai, K.N. Fan, Effect of Si/Al ratio of mesoporous support on the structure evolution and catalytic performance of the Cu/Al-HMS catalyst, J. Phys. Chem. C 114 (18) (2010) 8523-8532. [72] H.R. Yue, Y.J. Zhao, L. Zhao, J. Lv, S.P. Wang, J.L. Gong, X.B. Ma, Hydrogenation of dimethyl oxalate to ethylene glycol on a Cu/SiO2/cordierite monolithic catalyst: Enhanced internal mass transfer and stability, AlChE. J. 58 (9) (2012) 2798-2809. [73] X.L. Zheng, H.Q. Lin, J.W. Zheng, X.P. Duan, Y.Z. Yuan, Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol, ACS Catal. 3 (12) (2013) 2738-2749. [74] H.C. Liu, H. Wang, J.H. Shen, Y. Sun, Z.M. Liu, Promotion effect of cerium and lanthanum oxides on Ni/SBA-15 catalyst for ammonia decomposition, Catal. Today 131 (1-4) (2008) 444-449. [75] A.F. Cunha, N. Mahata, J.J.M. Orfao, J.L. Figueiredo, Methane decomposition on La2O3-promoted raney-type Fe catalysts, Energy Fuels 23 (8) (2009) 4047-4050. [76] R. Kam, C. Selomulya, R. Amal, J. Scott, The influence of La-doping on the activity and stability of Cu/ZnO catalyst for the low-temperature water-gas shift reaction, J. Catal. 273 (1) (2010) 73-81. [77] E. Kok, J. Scott, N. Cant, D. Trimm, The impact of ruthenium, lanthanum and activation conditions on the methanation activity of alumina-supported cobalt catalysts, Catal. Today 164 (1) (2011) 297-301. [78] L.P. Han, G.F. Zhao, Y.F. Chen, J. Zhu, P.J. Chen, Y. Liu, Y. Lu, Cu-fiber-structured La2O3-PdAu(alloy)-Cu nanocomposite catalyst for gas-phase dimethyl oxalate hydrogenation to ethylene glycol, Catal. Sci. Technol. 6 (19) (2016) 7024-7028. [79] Z.S. Shi, Q.Q. Tan, C. Tian, Y. Pan, X.W. Sun, J.X. Zhang, D.F. Wu, CO2 hydrogenation to methanol over Cu-In intermetallic catalysts: Effect of reduction temperature, J. Catal. 379 (2019) 78-89. [80] L.B. Yao, X.C. Shen, Y.B. Pan, Z.M. Peng, Synergy between active sites of Cu-In-Zr-O catalyst in CO2 hydrogenation to methanol, J. Catal. 372 (2019) 74-85. [81] D. Guowei Wang, D. Haoren Wang, H.L. Zhang, D. Qingqing Zhu, P. Chunyi Li, P. Honghong Shan, Highly selective and stable NiSn/SiO2 catalyst for isobutane dehydrogenation: effects of Sn addition, ChemCatChem 8 (19) (2016) 3137-3145. [82] M. Abbas, J. Zhang, Z. Chen, J.G. Chen, Sonochemical synthesis of Zn-promoted porous MgO-supported lamellar Cu catalysts for selective hydrogenation of dimethyl oxalate to ethanol and their long-term stability, New J. Chem. 42 (21) (2018) 17553-17562. [83] L.C. Liu, F. Gao, P. Concepcion, A. Corma, A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts, J. Catal. 350 (2017) 218-225. [84] L.C. Liu, P. Concepcion, A. Corma, Non-noble metal catalysts for hydrogenation: a facile method for preparing Co nanoparticles covered with thin layered carbon, J. Catal. 340 (2016) 1-9. [85] A.Y. Yin, X.Y. Guo, W.L. Dai, K.N. Fan, The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: new insights on the synergetic effect between Cu0 and Cu+, J. Phys. Chem. C 113 (25) (2009) 11003-11013. [86] J. Zheng, W.C. Zhu, C.X. Ma, M.J. Jia, Z.L. Wang, Y.H. Hou, W.X. Zhang, Hydrogenolysis of glycerol to 1, 2-propanediol over Cu/SiO2 catalysts prepared by ion-exchange method, Pol. J. Chem. 83 (7) (2009) 1379-1387. [87] L. Lin, P.B. Pan, Z.F. Zhou, Z.J. Li, J.X. Yang, M.L. Sun, Y.G. Yao, Cu/SiO2 catalysts prepared by the Sol-gel method for hydrogenation of dimethyl oxalate to ethylene glycol, Chin. J. Catal. 32 (6-8) (2011) 957-969. [88] C. Wen, F.Q. Li, Y.Y. Cui, W.L. Dai, K.N. Fan, Investigation of the structural evolution and catalytic performance of the CuZnAl catalysts in the hydrogenation of dimethyl oxalate to ethylene glycol, Catal. Today 233 (2014) 117-126. [89] T. Popa, Y.L. Zhang, E.L. Jin, M.H. Fan, An environmentally benign and low-cost approach to synthesis of thermally stable industrial catalyst Cu/SiO2 for the hydrogenation of dimethyl oxalate to ethylene glycol, Appl. Catal. A Gen. 505 (2015) 52-61. |
| [1] | Dong Lu, Shuming Jin, Qiuyang Wu, Jiahao Liu, Fang Wang, Li Deng, Kaili Nie. Co-production of biodiesel and methacrylated fatty acid through enzymatic catalysis with methyl methacrylate as acyl acceptor [J]. Chinese Journal of Chemical Engineering, 2025, 85(9): 16-24. |
| [2] | Tiantong Zhang, Haolin Cheng, Yao Nian, Jinli Zhang, Qingbiao Li, You Han. Application of generative artificial intelligence in catalysis [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 86-95. |
| [3] | Zhi Ma, Peng Cui, Xu Wang, Lanyu Li, Haoxiang Xu, Adrian Fisher, Daojian Cheng. The integration of artificial intelligence and high-throughput experiments: An innovative driving force in catalyst design [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 117-132. |
| [4] | Zheyuan Pang, Siying Liu, Yiting Lin, Xiangchen Fang, Honglai Liu, Chong Peng, Cheng Lian. Large language model-based multi-objective modeling framework for vacuum gas oil hydrotreating [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 133-145. |
| [5] | Raúl Díaz, Hongliang Xin. Knowledge graphs in heterogeneous catalysis: Recent advances and future opportunities [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 179-189. |
| [6] | Xinzhe Zhang, Aipeng Li, Xiaohan Huang, Qiang Fei. Recent advances in the biosynthesis of natural products from C1 compounds [J]. Chinese Journal of Chemical Engineering, 2025, 83(7): 277-285. |
| [7] | Mengting Chen, Minjie Zhu, Tingyu Zhou, Qifeng Zhong, Meihua Zhang, Yingxin Liu, Zuojun Wei. Enhanced activity and stability of SAPO-5 zeolite supported RuMn catalyst for aqueous-phase selective hydrodeoxygenation of guaiacol to cyclohexanol [J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 200-207. |
| [8] | Zhenhui Lv, Jianan Li, Tao Yang, Yibao Li, Chong Peng. Effect of carbon modifications on the performance of hydrogenation catalysts [J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 270-276. |
| [9] | Ting Pu, Junning Lu, Zhirui Liu, Xingxing Zeng, Baoyu Liu. Alkylation of benzene and 1-dodecene over cerium-silicate pillared MWW zeolite [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 110-118. |
| [10] | Xiangli Liu, Yiqing Zeng, Jiahao Chen, Zhaoxiang Zhong, Weihong Xing. Research progress on the monolithic catalyst for hydrogenation of CO2 to methane [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 184-197. |
| [11] | Renjie Deng, Yunxuan Liu, Yan Li, Fangfang Zhao, Dejian Yan, Kuiyi You, He'an Luo. Enhanced hydration efficiency of cyclohexene to cyclohexanol over acid-modified HZSM-5 catalysts under solvent-free conditions [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 1-10. |
| [12] | Wenbo Li, Xinyao Fu, Weiming Zhai, Xingyang Huang, Wenbin Chen, Chen Zhang, Wei Zhang, Cuiqing Li, Yong Luo, Feng Liu, Mingfeng Li. Hydrogenation kinetic of alkenes and aromatics over NiMo hydrotreatment catalysts [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 11-22. |
| [13] | Zhe Ding, Li Guo, Fang Bai, Chao Hua, Ping Lu, Jinyi Chen. Toward the rational design for low-temperature hydrogenation of silicon tetrachloride: Mechanism and data-driven interpretable descriptor [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 172-184. |
| [14] | Zhengtao Wei, Xiaofei Wang, Xuliang Lin, Xueqing Qiu. In-situ construction of morphology-controllable flower-shaped lignin-derived carbon/ZnO composite for efficient photocatalytic degradation of organic dyes [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 241-251. |
| [15] | Jian Long, Mengru Zhang, Anlan Li, Cheng Huang, Dong Xue. Hybrid model of multimodal based on data enhancement and lumped reaction kinetics: Applying to industrial ebullated-bed residue hydrogenation unit [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 284-302. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
