›› 2011, Vol. 19 ›› Issue (5): 747-753.
• SELECTED PAPERS FROM THE 4TH NATIONAL CONFERENCE ON MASS TRANSFER AND SEPARATION ENGINEERING AND IN HONOUR OF PROF. K. T. YU (YU GUOCONG) • Previous Articles Next Articles
LI Jianlong1, CHEN Guanghui1, ZHANG Pan2, WANG Weiwen1, DUAN Jihai1
Received:
2010-06-11
Revised:
2011-07-20
Online:
2011-10-28
Published:
2011-10-28
Supported by:
李建隆1, 陈光辉1, 张攀2, 王伟文1, 段继海1
通讯作者:
LI Jianlong,E-mail:ljlong@qust.edu.cn
基金资助:
LI Jianlong, CHEN Guanghui, ZHANG Pan, WANG Weiwen, DUAN Jihai. Technical Challenges and Progress in Fluidized Bed Chemical Vapor Deposition of Polysilicon[J]. , 2011, 19(5): 747-753.
李建隆, 陈光辉, 张攀, 王伟文, 段继海. Technical Challenges and Progress in Fluidized Bed Chemical Vapor Deposition of Polysilicon[J]. , 2011, 19(5): 747-753.
1 Tejero-Ezpeleta, M.P., Buchholz, S., Mleczko, L., “Optimization of reaction conditions in a fluidized-bed for silane pyrolysis”, Can. J. Chem. Eng., 82, 520-529 (2004). 2 White, C.M., Ege, P., Ydstie, B.E., “Size distribution modeling for fluidized bed solar-grade silicon production”, Powder Technol., 163, 51-58 (2006). 3 Wei, M., Patadia, S., Kammen, D.M., “Putting renewables and energy efficiency to work:How many jobs can the clean energy industry generate in the USA”, Energy Policy, 38, 919-931 (2010). 4 Thomson, E., “China’s nuclear energy in light of the disaster in Japan”, Eurasian Geography and Economics, 52, 464-482 (2011). 5 Guenther, C., O’Brien, T., Syamlal, M., “A numerical model of silane pyrolysis in a gas-solids fluidized bed”, In:the International Conference on Multiphase Flow, SRP, New Orleans 1-12 (2001). 6 Mara, W., Herring, R., Hunt, L., Handbook of Semiconductor Silicon Technology, Noyes Publ., New Jersey (1990). 7 Wakamatsu, S., Oda, H., “Development of solar grade silicon manufacturing technology by vapor-to-liquid deposition method”, Nippon Kagakkai Koen Yokoshu, 85, 510-519 (2005). 8 Mauk, M., “Silicon solar cells:Physical metallurgy principles”, Journal of the Minerals, Metals and Materials Society, 55, 38-42 (2003). 9 Odden, J.O., Egeberg, P.K., Kjekshus, A., “From monosilane to crystalline silicon, Part I:Decomposition of monosilane at 690-830 K and initial pressures 0.1-6.6 MPa in a free-space reactor”, Sol. Energy Mater. Sol. Cells, 86, 165-176 (2005). 10 Iya, S., “Development of the silane process for the production of low-cost polysilicon”, In:JPL Proceedings of the Flat-Plate Solar Array Project Workshop on Low-Cost Polysilicon for Terrestrial Photovoltaic Solar-Cell Applications, California, USA, 135-145 (1986). 11 Furusawa, T., Kojima, T., Hiroha, H., “Chemical vapor deposition and homogeneous nucleation in monosilane pyrolysis within interparticle spaces—application of fines formation analysis to fluidized bed CVD”, Chem. Eng. Sci., 43, 2037-2042 (1988). 12 Hsu, G., Rohatgi, N., Houseman, J., “Silicon particle growth in a fluidized-bed reactor”, AIChE J., 33, 784-791 (1987). 13 Rohatgi, N.K., Silicon Production in a Fluidized Bed Reactor:Final Report, Jet Propulsion Lab., Pasadena, CA, USA (1986). 14 Lai, S., Dudukovic, M.P., Ramachandran, P.A., “Chemical vapor deposition and homogeneous nucleation in fluidized bed reactors:silicon from silane”, Chem. Eng. Sci., 41, 633-641 (1986). 15 Caussat, B., Hemati, M., Couderc, J.P., “Silicon deposition from silane or disilane in a fluidized bed-Part I:Experimental study”, Chem. Eng. Sci., 50, 3615-3624 (1995). 16 Caussat, B., Hemati, M., Couderc, J.P., “Silicon deposition from silane or disilane in a fluidized bed-Part II:Theoretical analysis and modeling”, Chem. Eng. Sci., 50, 3625-3635 (1995). 17 Reuge, N., Cadoret, L., Caussat, B., “Multifluid Eulerian modelling of a silicon fluidized bed chemical vapor deposition process:Analysis of various kinetic models”, Chem. Eng. J., 148, 506-516 (2009). 18 Cadoret, L., Reuge, N., Pannala, S., Syamlal, M., Coufort, C., Caussat, B., “Silicon CVD on powders in fluidized bed:Experimental and multifluid Eulerian modelling study”, Surf. Coat. Technol., 201, 8919-8923 (2007). 19 Reuge, N., Cadoret, L., Coufort-Saudejaud, C., Pannala, S., Syamlal, M., Caussat, B., “Multifluid Eulerian modeling of dense gas-solids fluidized bed hydrodynamics:Influence of the dissipation parameters”, Chem. Eng. Sci., 63, 5540-5551 (2008). 20 Cadoret, L., Reuge, N., Pannala, S., Syamlal, M., Rossignol, C., Dexpert-Ghys, J., Coufort, C., Caussat, B., “Silicon chemical vapor deposition on macro and submicron powders in a fluidized bed”, Powder Technol., 190, 185-191 (2009). 21 Pi a, J., Bucalá, V., Schbib, N.S., Ege, P., De Lasa, H.I., “Modeling a silicon CVD spouted bed pilot plant reactor”, International Journal of Chemical Reactor Engineering, 4, 9-28 (2006). 22 Setty, H., Yaws, C., Martin, B., Wangler, D., “Method of operating a quartz fluidized bed reactor for the production of silicon”, US Pat., 3963838 (1976). 23 Parkinson, G., “Polysi icon business shines brightly”, Chem. Eng. Prog., 104, 8-11 (2008). 24 Rinaldi, A., Crippa, D., “CVD technologies for silicon:A quick survey”, Semiconductors and Semimetals, 72, 1-50 (2001) 25 Murthy, T., Miyamoto, N., Shimbo, M., Nishizawa, J., “Gas-phase nucleation during the thermal decomposition of silane in hydrogen”, J. Cryst. Growth, 33, 1-7 (1976). 26 Hsu, G., Hogle, R., Rohatgi, N., Morrison, A., “Fines in fluidized bed silane pyrolysis”, J. Electrochem. Soc., 131, 660-668 (1984). 27 Kimura, T., Kojima, T., “Numerical-model of a fluidized-bed reactor for polycrystalline silicon production-estimation of CVD and fines formation”, Le Journal de Physique IV, 2, 103-110 (1991). 28 Kommu, S., Khomami, B., Biswas, P., “Simulation of aerosol dynamics and transport in chemically reacting particulate matter laden flows. Part II:Application to CVD reactors”, Chem. Eng. Sci., 59, 359-371 (2004). 29 Kojima, T., Kimura, T., Matsukata, M., “Development of numerical model for reactions in fluidized bed grid zone-application to chemical vapor deposition of polycrystalline silicon by monosilane pyrolysis”, Chem. Eng. Sci., 45, 2527-2534 (1990). 30 Heady, R., Cahn, J., “Experimental test of classical nucleation theory in a liquid\liquid miscibility gap system”, The Journal of Chemical Physics, 58, 896-910 (1973). 31 Prakash, A., Bapat, A., Zachariah, M., “A simple numerical algorithm and software for solution of nucleation, surface growth, and coagulation problems”, Aerosol Sci. Technol., 37, 892-898 (2003). 32 Kruis, F.E., Schoonman, J., Scarlett, B., “Homogeneous nucleation of silicon”, J. Aerosol Sci, 25, 1291-1304 (1994). 33 Nijhawan, S., McMurry, P.H., Swihart, M.T., Suh, S.M., Girshick, S.L., Campbell, S.A., Brockmann, J.E., “An experimental and numerical study of particle nucleation and growth during low-pressure thermal decomposition of silane”, J. Aerosol Sci, 34, 691-711 (2003). 34 Breiland, W., Coltrin, M., Ho, P., “Comparisons between a gas‐ phase model of silane chemical vapor deposition and laser-diagnostic measurements”, J. Appl. Phys., 59, 3267-3273 (1986). 35 Breiland, W.G., Ho, P., Coltrin, M.E., “Gas/phase silicon atoms in silane chemical vapor deposition:Laser/excited fluorescence measurements and comparisons with model predictions”, J. Appl. Phys., 60, 1505-1513 (1986). 36 Ho, P., Coltrin, M., Breiland, W., “Laser-induced fluorescence measurements and kinetic analysis of Si atom formation in a rotating disk chemical vapor deposition reactor”, The Journal of Physical Chemistry, 98, 10138-10147 (1994). 37 Yuuki, A., Matsui, Y., Tachibana, K., “A numerical study on gaseous reactions in silane pyrolysis”, Japanese Journal of Applied Physics, 26, 747-752 (1987). 38 Swihart, M.T., Nijhawan, S., Mahajan, M.R., Suh, S.M., Girshick, S.L., “Modeling the nucleation kinetics and aerosol dynamics of particle formation during CVD of silicon from silane”, J. Aerosol Sci, 29, S79-S80 (1998). 39 Giunta, C.J., McCurdy, R.J., ChappleSokol, J.D., Gordon, R.G., “Gas phase kinetics in the atmospheric pressure chemical vapor deposition of silicon from silane and disilane”, J. Appl. Phys., 67, 1062-1075 (1990). 40 Onischuk, A.A., Strunin, V.P., Ushakova, M.A., Samoilova, R.I., Panfilov, V.N., “Analysis of hydrogen and paramagnetic defects in a Si:H aerosol particles. Resulting from thermal decomposition of silane”, Physica Status Solidi (b), 193, 25-38 (1996). 41 Onischuk, A.A., Strunin, V.P., Ushakova, M.A., Panfilov, V.N., “Analysis of hydrogen in aerosol particles of a Si:H forming during the pyrolysis of silane”, Physica Status Solidi (b), 186, 43-55 (1994). 42 Onischuk, A.A., Strunin, V.P., Samoilova, R.I., Nosov, A.V., Ushakova, M.A., Panfilov, V.N., “Chemical composition and bond structure of aerosol particles of amorphous hydrogenated silicon forming from thermal decomposition of silane”, J Aerosol Sci, 28, 1425-1441 (1997). 43 Onischuk, A.A., Strunin, V.P., Ushakova, M.A., Panfilov, V.N., “On the pathways of aerosol formation by thermal decomposition of silane”, J Aerosol Sci, 28, 207-222 (1997). 44 Onischuk, A.A., Strunin, V.P., Ushakova, M.A., Panfilov, V.N.,“Studying of silane thermal decomposition mechanism”, Int. J. Chem. Kinet., 30, 99-110 (1998). 45 Kremer, D.M., Davis, R.W., Moore, E.F., Ehrman, S.H., “A numerical investigation of the effects of gas-phase particle formation on silicon film deposition from silane”, J. Cryst. Growth, 247, 333-356 (2003). 46 Kremer, D.M., Davis, R.W., Moore, E.F., Maslar, J.E., Burgess, J.D.R., Ehrman, S.H., “An investigation of particle dynamics in a rotating disk chemical vapor deposition reactor”, J. Electrochem. Soc., 150, G127-G139 (2003). 47 Vepřřek, S., Schopper, K., Ambacher, O., Rieger, W., Vepřek\Heijman, M., “Mechanism of cluster formation in a clean silane discharge”, J. Electrochem. Soc., 140, 1935-1942 (1993). 48 Swihart, M.T., Girshick, S.L., “Thermochemistry and kinetics of silicon hydride cluster formation during thermal decomposition of silane”, The Journal of Physical Chemistry B, 103, 64-76 (1999). 49 Girshick, S., Swihart, M., Suh, S., Mahajan, M., Nijhawan, S., “Numerical modeling of gas-phase nucleation and particle growth during chemical vapor deposition of silicon”, Journal Electrochemical Society, 147, 2303-2311 (2000). 50 Talukdar, S.S., Swihart, M.T., “Aerosol dynamics modeling of silicon nanoparticle formation during silane pyrolysis:a comparison of three solution methods”, J. Aerosol Sci, 35, 889-908 (2004). 51 Prasad, R., van Slooten, R., “Annular heated fluidized bed reactor”, US Pat., 5165908 (1992). 52 van Slooten, R., Prasad, R., “Annular heated fluidized bed reactor”, US Pat., 4992245 (1991). 53 Yoon, P., Song, Y., “Fluidized bed reactor with microwave heating system for preparing high-purity polycrystalline silicon”, US Pat., 4786477 (1988). 54 Kim, H.Y., Song, Y.M., Jeon, Y.Y., Kwon, D.H., Lee, K.M., Lee, J.S., Park, D.S., “Heating of fluidized bed reactor by microwaves”, US Pat., 5374413 (1994). 55 Rogers, L.C., Polysilicon Preparation, Noyes Publications, New Jersey (1990). 56 Rinaldi, A., Crippa, D., “CVD technologies for silicon:A quick survey”, Semiconductors and Semimetals, 72, 1-50 (2001). 57 Setty, H., Yaws, C., Martin, B., Wangler, D., “Method of operating a quartz fluidized bed reactor for the production of silicon”, US Pat., 3963838 (1976). 58 Padovani, F., “Silicon seed production process”, US Pat., 4207360 (1980). 59 Padovani, F.A., Miller, M.B., Moore, J.A., Fowler, J.H., June, M.N., Matthews, J.D., Morton, T., Stotko, N.A., Palmer, L.B., “Process of refining impure silicon to produce purified electronic grade silicon”, US Pat., 4092446 (1978). 60 Kim, H.Y., koo Yoon, K., Park, Y.K., Choi, W.C., “High-pressure fluidized bed reactor for preparing granular polycrystalline silicon”, EP Pat., 1984297 (2007). 61 Kim, H.Y., Song, Y.M., Jeon, J.Y., Kwon, D.H., Lee, K.M., Lee, J.S., Park, D.S., “Fluidized bed reactor heated by microwaves”, US Pat., 5382412 (1995). 62 Doelling, M.K., “Microwave assisted fluidized bed processor”, US Pat., 4967486 (1990). 63 Poong, Y., Yongmok, S., “Method of preparing a high-purity polycrystalline silicon using a microwave heating system in a fluidized bed reactor”, US Pat., 4900411 (1990). 64 Blackwood, D., Zhang, Y., “The effect of etching temperature on the photoluminescence emitted from, and the morphology of, p-type porous silicon”, Electrochim. Acta, 48, 623-630 (2003). 65 Filtvedt, W., Javidi, M., Holt, A., Melaaen, M., Marstein, E., Tathgar, H., Ramachandran, P., “Development of fluidized bed reactors for silicon production”, Sol. Energy Mater. Sol. Cells, 94, 1980-1995 (2010). |
[1] | Ming Liu, Ying Li, Rui Wang, Guoqiang Shao, Pengpeng Lv, Jun Li, Qingshan Zhu. Uniform deposition of ultra-thin TiO2 film on mica substrate by atmospheric pressure chemical vapor deposition: Effect of precursor concentration [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 99-107. |
[2] | Feng Pan, Sugang Ma, Yu Ge, Chuanlin Fan, Qingshan Zhu. Fluidization thermal decomposition of sodium fluosilicate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 329-337. |
[3] | Feng Jiang, Xiao Li, Guopeng Qi, Xiulun Li. Effects of particle type on the particle fluidization and distribution in a liquid–solid circulating fluidized bed boiler [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 53-66. |
[4] | Zhibin Ma, Xueli Zhang, Guangjun Lu, Yanxia Guo, Huiping Song, Fangqin Cheng. Hydrothermal synthesis of zeolitic material from circulating fluidized bed combustion fly ash for the highly efficient removal of lead from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 193-205. |
[5] | Nouman Ahmad, Jianqiang Deng, Muhammad Adnan. Numerical investigation for the suitable choice of bubble diameter correlation for EMMS/bubbling drag model [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 254-270. |
[6] | Feng Jiang, Di Xu, Ruijia Li, Guopeng Qi, Xiulun Li. Particle collision behavior and heat transfer performance in a Na2SO4 circulating fluidized bed evaporator [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 40-52. |
[7] | Wenjuan Bai, Dianming Chu, Kuanxin Tang, Lei Geng, Yan Li, Yan He. The motion mechanism and characteristic of bubble in a pseudo-2D tapered fluidized bed [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 255-270. |
[8] | Zhen Wan, Youjun Lu. Numerical simulation of local and global mixing/segregation characteristics in a gas–solid fluidized bed [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 72-86. |
[9] | Wenjuan Bai, Dianming Chu, Yan He. Fluidization dynamic characteristics of carbon nanotube particles in a tapered fluidized bed [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 321-331. |
[10] | Teng Wang, Zihong Xia, Caixia Chen. Computational study of bubble coalescence/break-up behaviors and bubble size distribution in a 3-D pressurized bubbling gas-solid fluidized bed of Geldart A particles [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 485-496. |
[11] | Liwang Wang, Erwen Chen, Liang Ma, Zhanghuang Yang, Zongzhe Li, Weihui Yang, Hualin Wang, Yulong Chang. Numerical simulation and experimental study of gas cyclone–liquid jet separator for fine particle separation [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 43-52. |
[12] | Jiawei Liao, Litao Zhu, Zhenghong Luo. Heterogeneity analysis of gas-solid flow hydrodynamics in a pilot-scale fluidized bed reactor [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 117-129. |
[13] | Sheng Fang, Yanding Wei, Lei Fu, Geng Tian, Haibin Qu. Time-series analysis of the characteristic pressure fluctuations in a conical fluidized bed with negative pressure [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 87-99. |
[14] | Yangjun Wei, Leming Cheng, Liyao Li. An analysis approach of mass and energy balance in a dual-reactor circulating fluidized bed system [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 18-26. |
[15] | Jiale Zheng, Wenli Song, Lin Du, Lina Wang, Songgeng Li. Desorption of VOC from polymer adsorbent in multistage fluidized bed [J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1709-1716. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||