›› 2017, Vol. 25 ›› Issue (9): 1143-1152.DOI: 10.1016/j.cjche.2017.03.010
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
Mona Akbari, Masoud Rahimi, Mahboubeh Faryadi
Received:
2016-08-10
Revised:
2017-03-04
Online:
2017-10-11
Published:
2017-09-28
Mona Akbari, Masoud Rahimi, Mahboubeh Faryadi
通讯作者:
Masoud Rahimi,E-mail:m.rahimi@razi.ac.ir,masoudrahimi@yahoo.com
Mona Akbari, Masoud Rahimi, Mahboubeh Faryadi. Gas-liquid flow mass transfer in a T-shape microreactor stimulated with 1.7 MHz ultrasound waves[J]. , 2017, 25(9): 1143-1152.
Mona Akbari, Masoud Rahimi, Mahboubeh Faryadi. Gas-liquid flow mass transfer in a T-shape microreactor stimulated with 1.7 MHz ultrasound waves[J]. , 2017, 25(9): 1143-1152.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2017.03.010
[1] G. Chen, J. Yue, Q. Yuan, Gas-liquid microreaction technology:Recent developments and future challenges, Chin. J. Chem. Eng. 16(5) (2008) 663-669. [2] C.W. Choi, D.I. Yu, M.H. Kim, Adiabatic two-phase flow in rectangular microchannels with different aspect ratios:Part I-Flow pattern, pressure drop and void fraction, Int. J. Heat Mass Transf. 54(1-3) (2011) 616-624. [3] H. Ganapathy, E. Al-Hajri, M. Ohadi, Mass transfer characteristics of gas-liquid absorption during Taylor flow in mini/microchannel reactors, Chem. Eng. Sci. 101(2013) 69-80. [4] K. Yamamoto, S. Ogata, Effects of T-junction size on bubble generation and flow instability for two-phase flows in circular microchannels, Int. J. Multiphase Flow 49(2013) 24-30. [5] A. Özkan, E. Yegân Erdem, Numerical analysis of mixing performance in sinusoidal microchannels based on particle motion in droplets, Microfluid. Nanofluid. 19(2015) 1101-1108. [6] Z. Zhang, Z. Qian, L. Xu, C. Wu, K. Guo, Deviation of carbon dioxide-water gas-liquid balance from thermodynamic equilibrium in turbulence I:Experiment and correlation, Chin. J. Chem. Eng. 21(7) (2013) 770-775. [7] F. Yang, S. Zhou, X. An, Gas-liquid hydrodynamics in a vessel stirred by dual dislocated-blade Rushton impellers, Chin. J. Chem. Eng. 23(11) (2015) 1746-1754. [8] W. Li, X. Geng, Y. Bao, Z. Gao, Micromixing characteristics in a gas-liquid-solid stirred tank with settling particles, Chin. J. Chem. Eng. 23(3) (2015) 461-470. [9] Z. Jia, Q. Chang, J. Qin, A. Mamat, Preparation of calcium carbonate nanoparticles with a continuous gas-liquid membrane contactor:Particles morphology and membrane fouling, Chin. J. Chem. Eng. 21(2) (2013) 121-126. [10] E. Santacesaria, M. Di Serio, P. Iengo, Mass transfer and kinetics in ethoxylation spray tower loop reactors, Chem. Eng. Sci. 54(10) (1999) 1499-1504. [11] J.A. Delgado, M.A. Uguina, J.L. Sotelo, V.I. Águeda, A. Sanz, Simulation of CO2 absorption into aqueous DEA using a hollow fiber membrane contactor:Evaluation of contactor performance, Chem. Eng. J. 152(2-3) (2009) 396-405. [12] S. Krumdieck, J. Wallace, O. Curnow, Compact, low energy CO2 management using amine solution in a packed bubble column, Chem. Eng. J. 135(1-2) (2008) 3-9. [13] C.P. Stemmet, M. Meeuwse, J. van der Schaaf, B.F.M. Kuster, J.C. Schouten, Gas-liquid mass transfer and axial dispersion in solid foam packings, Chem. Eng. Sci. 62(18-20) (2007) 5444-5450. [14] F. Yi, H.-K. Zou, G.-W. Chu, L. Shao, J.-F. Chen, Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed, Chem. Eng. J. 145(3) (2009) 377-384. [15] H. Niu, L. Pan, H. Su, S. Wang, Flow pattern, pressure drop, and mass transfer in a gas-liquid concurrent two-phase flow microchannel reactor, Ind. Eng. Chem. Res. 48(2009) 1621-1628. [16] T.Y. Chan, G.H. Priestman, J.M. MacInnes, R.W.K. Allen, Development of a microchannel contactor-separator for immiscible liquids, Chem. Eng. Res. Des. 86(1) (2008) 65-74. [17] R. Luo, L. Wang, Liquid flow pattern around Taylor bubbles in an etched rectangular microchannel, Chem. Eng. Res. Des. 90(8) (2012) 998-1010. [18] M. Heuberger, L. Gottardo, M. Dressler, R. Hufenus, Biphasic fluid oscillator with coaxial injection and upstream mass and momentum transfer, Microfluid. Nanofluid. 19(3) (2015) 653-663. [19] W. Ehrfeld, V. Hessel, H. Lowe, Microreactors New Technology for Modern Chemistry, Wiley-VCH, Weinheim, 2000. [20] X. Wang, G. Liu, K. Wang, G. Luo, Measurement of internal flow field during droplet formation process accompanied with mass transfer, Microfluid. Nanofluid. 19(3) (2015) 757-766. [21] M. Rahimi, M. Akbari, M.A. Parsamoghadam, A.A. Alsairafi, CFD study on effect of channel confluence angle on fluid flow pattern in asymmetrical shaped microchannels, Comput. Chem. Eng. 73(2015) 172-182. [22] A. Schuster, K. Sefiane, J. Ponton, Multiphase mass transport in mini/micro-channels microreactor, Chem. Eng. Res. Des. 86(5) (2008) 527-534. [23] B. Xu, W. Cai, X. Liu, X. Zhang, Mass transfer behavior of liquid-liquid slug flow in circular cross-section microchannel, Chem. Eng. Res. Des. 91(7) (2013) 1203-1211. [24] Y. Zhao, G. Chen, Q. Yuan, Liquid-liquid two-phase flow patterns in a rectangular microchannel, AIChE J. 52(12) (2006) 4052-4060. [25] S. Ferrouillat, P. Tochon, H. Peerhossaini, Micromixing enhancement by turbulence:Application to multifunctional heat exchangers, Chem. Eng. Process. 45(8) (2006) 633-640. [26] M. Kashid, A. Renken, L. Kiwi-Minsker, Mixing efficiency and energy consumption for five generic microchannel designs, Chem. Eng. J. 167(2-3) (2011) 436-443. [27] M. Darekar, K.K. Singh, S. Mukhopadhyay, K.T. Shenoy, S.K. Ghosh, Solvent extraction in microbore tubes with UNPS-TBP in dodecane system, Sep. Purif. Technol. 128(2014) 96-105. [28] U. Novak, A. Pohar, I. Plazl, P. Žnidaršič-Plazl, Ionic liquid-based aqueous twophase extraction within a microchannel system, Sep. Purif. Technol. 97(2012) 172-178. [29] H. Su, S. Wang, H. Niu, L. Pan, A. Wang, Y. Hu, Mass transfer characteristics of H2S absorption from gaseous mixture into methyldiethanolamine solution in a Tjunction microchannel, Sep. Purif. Technol. 72(3) (2010) 326-334. [30] C. Ye, G. Chen, Q. Yuan, Process characteristics of CO2 absorption by aqueous Monoethanolamine in a microchannel reactor, Chin. J. Chem. Eng. 20(1) (2012) 111-119. [31] B. Agostini, J.R. Thome, M. Fabbri, B. Michel, D. Calmi, U. Kloter, High heat flux flow boiling in silicon multi-microchannels-Part I:Heat transfer characteristics of refrigerant R236fa, Int. J. Heat Mass Transf. 51(21-22) (2008) 5400-5414. [32] T. Harirchian, S.V. Garimella, A comprehensive flow regime map for microchannel flow boiling with quantitative transition criteria, Int. J. Heat Mass Transf. 53(13-14) (2010) 2694-2702. [33] W. Li, Z. Wu, A general correlation for adiabatic two-phase pressure drop in micro/mini-channels, Int. J. Heat Mass Transf. 53(13-14) (2010) 2732-2739. [34] S.-S. Hsieh, C.-Y. Lin, Correlation of critical heat flux and two-phase friction factor for subcooled convective boiling in structured surface microchannels, Int. J. Heat Mass Transf. 55(1-3) (2012) 32-42. [35] T. Harirchian, S.V. Garimella, Flow regime-based modeling of heat transfer and pressure drop in microchannel flow boiling, Int. J. Heat Mass Transf. 55(4) (2012) 1246-1260. [36] E. Jafarifar, M. Hajialyani, M. Akbari, M. Rahimi, Y. Shokoohinia, A. Fattahi, Preparation of a reproducible long-acting formulation of risperidone-loaded PLGA microspheres using microfluidic method, Pharm. Dev. Technol. (2016) 1-8. [37] V.M. Rajesh, V.V. Buwa, Experimental characterization of gas-liquid-liquid flows in T-junction microchannels, Chem. Eng. J. 207-208(2012) 832-844. [38] J. Yue, G. Chen, Q. Yuan, L. Luo, Y. Gonthier, Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel, Chem. Eng. Sci. 62(7) (2007) 2096-2108. [39] J. Yue, L. Luo, Y. Gonthier, G. Chen, Q. Yuan, An experimental investigation of gas-liquid two-phase flow in single microchannel contactors, Chem. Eng. Sci. 63(16) (2008) 4189-4202. [40] J. Yue, L. Luo, Y. Gonthier, G. Chen, Q. Yuan, An experimental study of air-water Taylor flow and mass transfer inside square microchannels, Chem. Eng. Sci. 64(16) (2009) 3697-3708. [41] V. Hessel, W. Ehrfeld, T. Herweck, V. Haverkamp, H. Lowe, J. Schiewe, C. Wille, T. Kern, N. Lutz, Gas/liquid microreactors:Hydrodynamics and mass transfer, 4th International Conference on Microreaction Technology, IMRET 4, Atlanta, USA 2000, pp. 174-186. [42] M. Rahimi, N. Azimi, F. Parvizian, Using microparticles to enhance micromixing in a high frequency continuous flow sonoreactor, Chem. Eng. Process. 70(2013) 250-258. [43] Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto, R. Maeda, Ultrasonic micromixer for micro fluidic systems, Sens. Actuators A 9(2001) 266-272. [44] Z. Dong, C. Yao, Y. Zhang, G. Chen, Q. Yuan, J. Xu, Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors, AIChE J. 62(4) (2016) 1294-1307. [45] Z. Dong, S. Zhao, Y. Zhang, C. Yao, Q. Yuan, G. Chen, Mixing and residence time distribution in ultrasonic microreactors, AIChE J. 63(2017) 1404-1418. [46] Z. Dong, C. Yao, X. Zhang, J. Xu, G. Chen, Y. Zhao, Q. Yuan, A high-power ultrasonic microreactor and its application in gas-liquid mass transfer intensification, Lab Chip 15(4) (2015) 1145-1152. [47] M. Rahimi, B. Aghel, B. Hatamifar, M. Akbari, A. Alsairafi, CFD modeling of mixing intensification assisted with ultrasound wave in a T-type microreactor, Chem. Eng. Process. 86(2014) 36-46. [48] M. Rahimi, S. Safari, M. Faryadi, N. Moradi, Experimental investigation on proper use of dual high-low frequency ultrasound waves-Advantage and disadvantage, Chem. Eng. Process. 78(2014) 17-26. [49] M. Faryadi, M. Rahimi, S. Safari, N. Moradi, Effect of high frequency ultrasound on micromixing efficiency in microchannels, Chem. Eng. Process. 77(2014) 13-21. [50] S. Aljbour, T. Tagawa, H. Yamada, Ultrasound-assisted capillary microreactor for aqueous-organic multiphase reactions, J. Ind. Eng. Chem. 15(6) (2009) 829-834. [51] A. Brotchie, F. Grieser, M. Ashokkumar, Effect of power and frequency on bubblesize distributions in acoustic cavitation, Phys. Rev. Lett. 102(8) (2009) 084302. [52] M.D. Luque de Castro, F. Priego-Capote, Ultrasound assistance to liquid-liquid extraction:A debatable analytical tool, Anal. Chim. Acta 583(1) (2007) 2-9. [53] K.A. Triplett, S.M. Ghiaasiaan, S.I. Abdel-Khalik, D.L. Sadowski, Gas-liquid two-phase flow in microchannels part I:Two-phase flow patterns, Int. J. Multiphase Flow 25(1999) 377-394. [54] M. Rahimi, M. Dehbani, M. Abolhasani, Experimental study on the effects of acoustic streaming of high frequency ultrasonic waves on convective heat transfer:Effects of transducer position and wave interference, Int. Commun. Heat Mass Transfer 39(5) (2012) 720-725. [55] P.R. Gogate, I.Z. Shirgaonkar, M. Sivakumar, P. Senthilkumar, N.P. Vichare, A.B. Pandit, Cavitation reactors:Efficiency assessment using a model reaction, AIChE J. 47(2001) 2526-2538. [56] M. Zanfir, A. Gavriilidis, C. Wille, V. Hessel, Carbon dioxide absorption in a falling film microstructured reactor:Experiments and modeling, Ind. Eng. Chem. Res. 44(2005) 1742-1751. [57] A. Schumpe, The estimation of gas solubilities in salt solutions, Chem. Eng. Sci. 48(1993) 153-158. [58] P.V. Danckwerts, Gas-Liquid Reactions, McGraw-Hill, New York, USA, 1970. [59] D. Roberts, P.V. Danckwerts, Kinetics of CO2 absorption in alkaline solutions-I. Transient absorption rates and catalysis by arsenite, Chem. Eng. Sci. 17(1962) 961-969. [60] H. Hikita, S. Asai, H. Ishikawa, M. Seko, H. Kitajima, Diffusivities of carbon dioxide in aqueous mixed electrolyte solutions, Chem. Eng. J. 17(1979) 77-80. [61] R. Pohorecki, W. Moniuk, Kinetics of reaction between carbon dioxide and hydroxylions in aqueous electrolyte solutions, Chem. Eng. Sci. 43(1988) I677-1684. [62] M.M. Sharma, P.V. Danckwerts, Chemical methods of measuring interfacial areas and mass transfer coefficients in two fluid systems, Braz. J. Chem. Eng. 15(1970) 522-528. [63] J.F. Chen, G.Z. Chen, J.X. Wang, L. Shao, P.F. Li, High-throughput microporous tubein-tube microreactor as novel gas-liquid contactor:Mass transfer study, AIChE J. 57(1) (2011) 239-249. |
[1] | Bo Yu, Guang Fu, Xinpei Li, Libo Zhang, Jing Li, Hongtao Qu, Dongbin Wang, Qingfeng Dong, Mengmeng Zhang. Arsenic removal from acidic industrial wastewater by ultrasonic activated phosphorus pentasulfide [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 46-52. |
[2] | Mingzhi Li, Zhikai Liu, Wang Yao, Chao Xu, Yangping Yu, Mei Yang, Guangwen Chen. Ultrasonic cavitation-enabled microfluidic approach toward the continuous synthesis of cesium lead halide perovskite nanocrystals [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 32-41. |
[3] | Anjun Liu, Jie Chen, Meng Guo, Chengmin Chen, Meihong Yang, Chao Yang. The internal circulations on internal mass transfer rate of a single drop in nonlinear uniaxial extensional flow [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 51-60. |
[4] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 85-91. |
[5] | Hongwei Liang, Wenling Li, Zisheng Feng, Jianming Chen, Guangwen Chu, Yang Xiang. Numerical simulation of gas-liquid flow in the bubble column using Wray-Agarwal turbulence model coupled with population balance model [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 205-223. |
[6] | Lusheng Zhai, Bo Xu, Haiyan Xia, Ningde Jin. Simultaneous measurement of velocity profile and liquid film thickness in horizontal gas-liquid slug flow by using ultrasonic Doppler method [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 323-340. |
[7] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[8] | Feng Pan, Sugang Ma, Yu Ge, Chuanlin Fan, Qingshan Zhu. Fluidization thermal decomposition of sodium fluosilicate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 329-337. |
[9] | Ming Chen, Huiyan Jiao, Jun Li, Zhibin Wang, Feng He, Yang Jin. Liquid–liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 281-289. |
[10] | Wen Tian, Junyi Ji, Hongjiao Li, Changjun Liu, Lei Song, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Measurements of the effective mass transfer areas for the gas–liquid rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 13-19. |
[11] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[12] | Yuandong Cui, Bin He, Yu Lei, Yu Liang, Wanting Zhao, Jian Sun, Xiaomin Liu. Lignin derived absorbent for efficient and sustainable CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 89-97. |
[13] | Qinyan Wang, Yang Jin, Jun Li, Yongbo Zhou, Ming Chen. Study on liquid–liquid two-phase mass transfer characteristics in the microchannel with deformed insert [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 114-126. |
[14] | Yilin Song, Yize Zhang, Hao Zhou. Experimental study on the desulfurization and evaporation characteristics of Ca(OH)2 droplets [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 127-135. |
[15] | Xiaodong Yang, Na Yang, Ziqiang Gong, Feifei Peng, Bin Jiang, Yongli Sun, Luhong Zhang. The superhydrophobic sponge decorated with Ni-Co double layered oxides with thiol modification for continuous oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 296-305. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||