Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (3): 649-659.DOI: 10.1016/j.cjche.2018.06.010
• Biotechnology and Bioengineering • Previous Articles Next Articles
Chenghui Zheng1,2, Jiashun Guo1, Chengkai Wang1, Yuanfeng Chen2, Huidong Zheng1, Zuoyi Yan1, Qinggen Chen3
Received:
2018-03-23
Revised:
2018-05-25
Online:
2019-04-25
Published:
2019-03-28
Contact:
Huidong Zheng,E-mail address:youngman@fzu.edu.cn
Supported by:
Supported by the National Natural Science Foundation of China (21476049,21506033) and Department of Science and Technology of Fujian Province,China (2014R1004-3,2015J01052,2016H4023 and FG-2016005).
Chenghui Zheng1,2, Jiashun Guo1, Chengkai Wang1, Yuanfeng Chen2, Huidong Zheng1, Zuoyi Yan1, Qinggen Chen3
通讯作者:
Huidong Zheng,E-mail address:youngman@fzu.edu.cn
基金资助:
Supported by the National Natural Science Foundation of China (21476049,21506033) and Department of Science and Technology of Fujian Province,China (2014R1004-3,2015J01052,2016H4023 and FG-2016005).
Chenghui Zheng, Jiashun Guo, Chengkai Wang, Yuanfeng Chen, Huidong Zheng, Zuoyi Yan, Qinggen Chen. Experimental study and simulation of a three-phase flow stirred bioreactor[J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 649-659.
Chenghui Zheng, Jiashun Guo, Chengkai Wang, Yuanfeng Chen, Huidong Zheng, Zuoyi Yan, Qinggen Chen. Experimental study and simulation of a three-phase flow stirred bioreactor[J]. 中国化学工程学报, 2019, 27(3): 649-659.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.06.010
[1] | M. Davoody, A.A.B. Abdul Raman, R. Parthasarathy, Maximizing gas-liquid interfacial area in a three-phase stirred vessel operating at high solids concentrations, Chem. Eng. Process. Process Intensif. 104(6) (2016) 133-147. |
[2] | G.H. Sedahmed, Y.A. El-Taweel, M.H. Abdel-Aziz, et al., Mass and heat transfer enhancement at the wall of cylindrical agitated vessel by turbulence promoters, Chem. Eng. Process. Process Intensif. 80(4) (2014) 43-50. |
[3] | M.Y. Chisti, M. Moo-Young, Hydrodynamics and oxygen transfer in pneumatic bioreactor devices, Biotechnol. Bioeng. 31(5) (1988) 487-494. |
[4] | F. Scargiali, A. Busciglio, F. Grisafi, et al., Mass transfer and hydrodynamic characteristics of unbaffled stirred bio-reactors:Influence of impeller design, Biochem. Eng. J. 82(15) (2014) 41-47. |
[5] | J.B. Joshi, C.B. Elias, M.S. Patole, Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells, Chem. Eng. J. Biochem. Eng. J. 62(2) (1996) 121-141. |
[6] | J.P. Arnaud, C. Lacroix, L. Choplin, Effect of agitation rate on cell release rate and metabolism during continuous fermentation with entrapped growing, Biotechnol. Tech. 6(3) (1992) 265-270. |
[7] | J.P. Arnaud, C. Lacroix, C. Foussereau, et al., Shear stress effects on growth and activity of Lactobacillus delbrueckii subsp. bulgaricus, J. Biotechnol. 29(1) (1993) 157-175. |
[8] | N. Edwards, S. Beeton, A.T. Bull, et al., A novel device for the assessment of shear effects on suspended microbial cultures, Appl. Microbiol. Biotechnol. 30(2) (1989) 190-195. |
[9] | M. Cai, X. Zhou, J. Lu, et al., Enhancing aspergiolide A production from a shearsensitive and easy-foaming marine-derived filamentous fungus Aspergillus glaucus by oxygen carrier addition and impeller combination in a bioreactor, Bioresour. Technol. 102(3) (2011) 3584-3586. |
[10] | Y. Chisti, U.J. Jauregui-Haza, Oxygen transfer and mixing in mechanically agitated airlift bioreactors, Biochem. Eng. J. 10(2) (2002) 143-153. |
[11] | A. Karimi, F. Golbabaei, M.R. Mehrnia, et al., Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes, Iran. J. Environ. Health Sci. Eng. 10(6) (2013) 1-9. |
[12] | F. Scargiali, A. Busciglio, F. Grisafi, et al., Oxygen transfer performance of unbaffled stirred vessels in view of their use as biochemical reactors for animal cell growth, Chem. Eng. Trans. 27(1) (2012) 205-210. |
[13] | N.M. Atef, M.H. Abdel-Aziz, Y.O. Fouad, et al., Mass and heat transfer at an array of horizontal cylinders placed at the bottom of a square agitated vessel, Chem. Eng. Res. Des. 94(9) (2015) 449-455. |
[14] | G. Baldi, R. Conti, E. Alaria, Complete suspension of particles in mechanically agitated vessels, Chem. Eng. Sci. 33(1) (1978) 21-25. |
[15] | R. Angst, M. Kraume, Experimental investigations of stirred solid/liquid systems in three different scales:Particle distribution and power consumption, Chem. Eng. Sci. 61(9) (2006) 2864-2870. |
[16] | T.Y. See, A.A. Abdul Raman, R.S.S. Raja Ehsan Shah, et al., Study of sparger location on solid suspension in a triple-impeller stirred vessel, Asia Pac. J. Chem. Eng. 11(2) (2016) 229-236. |
[17] | M.M. Buffo, L.J. Correa, M.N. Esperanca, et al., Influence of dual-impeller type and configuration on oxygen transfer, power consumption, and shear rate in a stirred tank bioreactor, Biochem. Eng. J. 114(10) (2016) 130-139. |
[18] | C.H. Zheng, Y.J. Huang, J.S. Guo, et al., Investigation of cleaner sulfide mineral oxidation technology:Simulation and evaluation of stirred bioreactors for goldbioleaching process, J. Clean. Prod. 192(8) (2018) 364-375. |
[19] | Y. Sano, N. Yamaguchi, T. Adachi, Mass transfer coefficients for suspended particles in agitated vessels and bubble columns, J. Chem. Eng. Jpn. 7(4) (1974) 255-261. |
[20] | N. Dohi, T. Takahashi, K. Minekawa, et al., Power consumption and solid suspension performance of large-scale impellers in gas-liquid-solid three-phase stirred tank reactors, Chem. Eng. J. 97(2-3) (2004) 103-114. |
[21] | A. Satio, M. Kamiwano, Power consumption, gas dispersion and solid suspension in three phase mixing vessels, Proceedings of the Proc 6th European Conference on Mixing Pavia, Italy F, 1998, Springer, Pavia, Italy, 1998. |
[22] | H. Ameur, M. Bouzit, Power consumption for stirring shear thinning fluids by two-blade impeller, Energy 50(2) (2013) 326-332. |
[23] | Y. Chisti, Animal-cell damage in sparged bioreactors, Trends Biotechnol. 18(10) (2000) 420-432. |
[24] | T.N. Zwietering, Suspending of solid particles in liquid by agitators, Chem. Eng. Sci. 8(3) (1958) 244-253. |
[25] | L.-j. Zhang, T. Li, W.-y. Ying, et al., Rising and descending bubble size distributions in gas-liquid and gas-liquid-solid slurry bubble column reactor, Chem. Eng. Res. Des. 86(10) (2008) 1143-1154. |
[26] | L.j. Zhang, T. Li, W.y. Ying, et al., Experimental study on bubble rising and descending velocity distribution in a slurry bubble column reactor, Chem. Eng. Technol. 31(9) (2008) 1362-1368. |
[27] | B. Wang, T. Li, Q.W. Sun, et al., Experimental study on flow behavior in a gas-solid fluidized bed for the methanol-to-olefins process, Chem. Eng. Technol. 33(10) (2010) 1591-1600. |
[28] | S. Kim, X.Y. Fu, X. Wang, et al., Development of the miniaturized four-sensor conductivity probe and the signal processing scheme, Int. J. Heat Mass Transf. 43(22) (2000) 4101-4118. |
[29] | P. Riedlberger, D. Weuster-Botz, New miniature stirred-tank bioreactors for parallel study of enzymatic biomass hydrolysis, Bioresour. Technol. 106(Supplement C) (2012) 138-146. |
[30] | J. Ding, X. Wang, X.-F. Zhou, et al., CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production, Bioresour. Technol. 101(18) (2010) 7005-7013. |
[31] | A.R. Khopkar, J. Aubin, C. Xuereb, et al., Gas-liquid flow generated by a pitchedblade turbine:Particle image velocimetry measurements and computational fluid dynamics simulations, Ind. Eng. Chem. Res. 42(21) (2003) 5318-5332. |
[32] | C. Gentric, D. Mignon, J. Bousquet, et al., Comparison of mixing in two industrial gas-liquid reactors using CFD simulations, Chem. Eng. Sci. 60(8-9) (2005) 2253-2272. |
[33] | X. Wang, J. Ding, W.-Q. Guo, et al., A hydrodynamics-reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation, Bioresour. Technol. 101(24) (2010) 9749-9757. |
[34] | R. Panneerselvam, S. Savithri, G.D. Surender, CFD modeling of gas-liquid-solid mechanically agitated contactor, Chem. Eng. Res. Des. 86(12) (2008) 1331-1344. |
[35] | B.N. Murthy, R.S. Ghadge, J.B. Joshi, CFD simulations of gas-liquid-solid stirred reactor:Prediction of critical impeller speed for solid suspension, Chem. Eng. Sci. 62(24) (2007) 7184-7195. |
[36] | J.X. Xu, H. Wang, J.J. Wang, et al., CFD Simulation of Mixing Effects in Gas-Liquid-Solid Stirred Reactor, Proceedings of the Adv Mat Res, F, 2012. |
[37] | F. Wang, Z. Mao, Y. Wang, et al., Measurement of phase holdups in liquid-liquid-solid three-phase stirred tanks and CFD simulation, Chem. Eng. Sci. 61(22) (2006) 7535-7550. |
[38] | A. Inc., Ansys Fluent Theory Guide, ANSYS, Inc., Canonsburg, 2013. |
[39] | A.R. Khopkar, A.R. Rammohan, V.V. Ranade, et al., Gas-liquid flow generated by a Rushton turbine in stirred vessel:CARPT/CT measurements and CFD simulations, Chem. Eng. Sci. 60(8-9) (2005) 2215-2229. |
[40] | M. Ljungqvist, A. Rasmuson, Numerical simulation of the two-phase flow in an axially stirred vessel, Chem. Eng. Res. Des. 79(5) (2001) 533-546. |
[41] | R. Zadghaffari, J.S. Moghaddas, Evaluation of drag force effect on hold-up in a gas-liquid stirred tank reactor, J. Chem. Eng. Jpn. 43(10) (2010) 833-840. |
[42] | A.R. Khopkar, G.R. Kasat, A.B. Pandit, et al., CFD simulation of mixing in tall gas-liquid stirred vessel:Role of local flow patterns, Chem. Eng. Sci. 61(9) (2006) 2921-2929. |
[43] | G.L. Lane, M.P. Schwarz, G.M. Evans, Modelling of the interaction between gas and liquid in stirred vessels, 10th European Conference on Mixing, Elsevier Science, Amsterdam 2000, pp. 197-204. |
[44] | A. Brucato, F. Grisafi, G. Montante, Particle drag coefficients in turbulent fluids, Chem. Eng. Sci. 53(18) (1998) 3295-3314. |
[45] | A. Tomiyama, Struggle with computational bubble dynamics, Proceedings of the Third International Conference on Multiphase Flow, Lyon, France, F, 1998, Elsevier Science Ltd., Lyon, France, 1998. |
[46] | L. Schiller, Z. Naumann, A drag coefficient correlation, VDI Ztg. 77(1935) 318-320. |
[47] | N.T. Padial, W.B. VanderHeyden, R.M. Rauenzahn, et al., Three-dimensional simulation of a three-phase draft-tube bubble column, Chem. Eng. Sci. 55(16) (2000) 3261-3273. |
[48] | Y. Sato, M. Sadatomi, K. Sekoguchi, Momentum and heat transfer in two-phase bubble flow-I. Theory, Int. J. Multiphase Flow 7(2) (1981) 167-177. |
[49] | J.O. Hinze, Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE J. 1(3) (1955) 289-295. |
[50] | R.S. Cherry, E.T. Papoutsakis, Hydrodynamic effects on cells in agitated tissue culture reactors, Bioprocess Eng. 1(1) (1986) 29-41. |
[51] | K.M. Dhanasekharan, J. Sanyal, A. Jain, et al., A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics, Chem. Eng. Sci. 60(1) (2005) 213-218. |
[52] | F. Kerdouss, A. Bannari, P. Proulx, et al., Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model, Comput. Chem. Eng. 32(8) (2008) 1943-1955. |
[53] | S. Nedeltchev, Correction of the penetration theory applied for prediction of mass transfer coefficients in a high-pressure bubble column operated with gasoline and toluene, J. Chem. Eng. Jpn. 36(5) (2003) 630-633. |
[54] | R. Higbie, The rate of absorption of a pure gas into a still liquid during short period of exposure, Trans. AIChE 31(16) (1935) 365-389. |
[55] | Y. Zhang, Y. Bai, H. Wang, CFD analysis of inter-phase forces in a bubble stirred vessel, Chem. Eng. Res. Des. 91(1) (2013) 29-35. |
[56] | G. Montante, D. Horn, A. Paglianti, Gas-liquid flow and bubble size distribution in stirred tanks, Chem. Eng. Sci. 63(8) (2008) 2107-2118. |
[57] | S. Yang, X. Li, C. Yang, et al., Computational fluid dynamics simulation and experimental measurement of gas and solid holdup distributions in a gas-liquid-solid stirred reactor, Ind. Eng. Chem. Res. 55(12) (2016) 3276-3286. |
[58] | X. Geng, Z. Gao, Y. Bao, PIV study of flow in an aerated tank with a hollow blade turbine, Int. J. Chem. React. Eng. 10(1) (2012) 850-868. |
[59] | G. Montante, A. Paglianti, F. Magelli, Analysis of dilute solid-liquid suspensions in turbulent stirred tanks, Chem. Eng. Res. Des. 90(10) (2012) 1448-1456. |
[60] | V.B. Rewatkar, K.S.M.S.R. Rao, J.B. Joshi, Critical impeller speed for solid suspension in mechanically agitated three-phase reactors. 1. Experimental part, Ind. Eng. Chem. Res. 30(8) (1991) 1770-1784. |
[61] | N.N. Dutta, V.G. Pangarkar, Critical impeller speed for solid suspension in multiimpeller agitated contactors:Solid-liquid system, Chem. Eng. Commun. 137(1) (1995) 135-146. |
[62] | K. Saravanan, A.W. Patwardban, J.B. Joshi, Critical impeller speed for solid suspension in gas inducing type mechanically agitated contactors, Can. J. Chem. Eng. 75(8) (1997) 664-676. |
[63] | A.P. van der Westhuizen, D.A. Deglon, Solids suspension in a pilot-scale mechanical flotation cell:A critical impeller speed correlation, Miner. Eng. 21(8) (2008) 621-629. |
[64] | A. Tamburini, A. Cipollina, G. Micale, et al., CFD simulations of dense solid-liquid suspensions in baffled stirred tanks:Prediction of the minimum impeller speed for complete suspension, Chem. Eng. J. 193-194(2012) 234-255. |
[65] | S. Hosseini, D. Patel, F. Ein-Mozaffari, et al., Study of solid-liquid mixing in agitated tanks through computational fluid dynamics modeling, Ind. Eng. Chem. Res. 49(9) (2010) 4426-4435. |
[66] | M. Bohnet, G. Niesmak, Distribution of solids in stirred suspension, Ger. Chem. Eng. 51(4) (1979) 314-315. |
[67] | L.M. Oshinowo, A. Bakker, CFD modeling of solids suspension in stirred tanks, Proceedings of the TMS Annual Meeting, Seattle, WA, F, 2002. Minerals and Materials:Seattle, WA, 2002. |
[68] | A. Tamburini, A. Cipollina, G. Micale, et al., CFD simulations of dense solid-liquid suspensions in baffled stirred tanks:Prediction of solid particle distribution, Chem. Eng. J. 223(2013) 875-890. |
[1] | Tongan Yan, Dahuan Liu, Qingyuan Yang, Chongli Zhong. Screening and design of COF-based mixed-matrix membrane for CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 170-177. |
[2] | Tongan Yan, Minman Tong, Qingyuan Yang, Dahuan Liu, Yandong Guo, Chongli Zhong. Large-scale simulations of CO2 diffusion in metal-organic frameworks with open Cu sites [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 1-9. |
[3] | Jiawei Liao, Litao Zhu, Zhenghong Luo. Heterogeneity analysis of gas-solid flow hydrodynamics in a pilot-scale fluidized bed reactor [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 117-129. |
[4] | Erfan Khodabandeh, Hesam Moghadasi, Mohsen Saffari Pour, Mikael Ersson, Pär G. Jönsson, Marc A. Rosen, Alireza Rahbari. CFD study of non-premixed swirling burners: Effect of turbulence models [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1029-1038. |
[5] | Yefeng Zhou, Yifan Han, Yujian Lu, Hongcun Bai, Xiayi Hu, Xincheng Zhang, Fanghua Xie, Xiao Luo, Jingdai Wang, Yongrong Yang. Numerical simulations and comparative analysis of two- and three-dimensional circulating fluidized bed reactors for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2020, 28(12): 2955-2967. |
[6] | Meng Li, Yangbo Tan, Jianglong Sun, De Xie, Zeng Liu. Drawdown mechanism of light particles in baffled stirred tank for the KR desulphurization process [J]. Chin.J.Chem.Eng., 2019, 27(2): 247-256. |
[7] | Xinyu Yu, Tianwen Chen, Qi Zhang, Tiefeng Wang. CFD simulations of quenching process for partial oxidation of methane: Comparison of jet-in-cross-flow and impinging flow configurations [J]. Chin.J.Chem.Eng., 2018, 26(5): 903-913. |
[8] | Lei Huang, Lin Qi, Hongna Wang, Jinli Zhang, Xiaoqiang Jia. Optimal design of heat exchanger header for coal gasification in supercritical water through CFD simulations [J]. , 2017, 25(8): 1101-1108. |
[9] | Weiguo Xu, Guodong Liu, Qinghong Zhang, Shuai Wang, Huilin Lu, Heping Tan. Heat transfer and friction factor of Therminol liquid phase heat transfer fluid in a ribbed tube [J]. , 2017, 25(10): 1343-1351. |
[10] | Weiguo Xu, Guodong Liu, Qinghong Zhang, Shuai Wang, Huilin Lu, Heping Tan. Heat transfer and friction factor of Therminol liquid phase heat transfer fluid in a ribbed tube [J]. , 2017, 25(10): 1343-1351. |
[11] | ZHU Aimei, ZHANG Xinbo, LIU Qinglin, ZHANG Qiugen. A Fully Flexible Potential Model for Carbon Dioxide [J]. , 2009, 17(2): 268-272. |
[12] | MIN Jian and GAO Zhengming. Large Eddy Simulations of Mixing Time in a Stirred Tank [J]. , 2006, 14(1): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||