[1] A.K. Gupta, S. Ibrahim, A.A. Shoaibi, Advances in sulfur chemistry for treatment of acid gases, Prog. Energy Combust. Sci. 54(2016) 65-92. [2] M.A. Dmitrienko, G.S. Nyashina, P.A. Strizhak, Major gas emissions from combustion of slurry fuels based on coal, coal waste, and coal derivatives, J. Clean. Prod. 177(2018) 284-301. [3] Y. Zhao, R. Hao, T. Wang, C. Yang, Follow-up research for integrative process of preoxidation and post-absorption cleaning flue gas:absorption of NO2, NO and SO2, Chem. Eng. J. 273(2015) 55-65. [4] C.C. Tseng, C.J. Li, Eulerian-Eulerian numerical simulation for a flue gas desulfurization tower with perforated sieve trays, Int. J. Heat Mass Transf. 116(2018) 329-345. [5] H.G. Nygaard, S. Kiil, J.E. Johnsson, J.N. Jensen, J. Hansen, F. Fogh, K. Dam-Johansen, Full-scale measurements of SO2 gas phase concentrations and slurry compositions in a wet flue gas desulphurization spray absorber, Fuel 83(9) (2004) 1151-1164. [6] S. Darake, M.S. Hatamipour, A. Rahimi, P. Hamzeloui, SO2 removal by seawater in a spray tower:experimental study and mathematical modeling, Chem. Eng. Res. Des. 109(2016) 180-189. [7] Q. Zhang, S. Wang, P. Zhu, Z. Wang, G. Zhang, Full-scale simulation of flow field in ammonia-based wet flue gas desulfurization double tower, J. Energy Inst. 91(2018) 619-629. [8] S. Kiil, M.L. Michelsen, K. Dam-Johansen, Experimental investigation and modeling of a wet flue gas desulfurization pilot plant, Ind. Eng. Chem. Res. 37(7) (1998) 2792-2806. [9] G. Zhou, W. Zhong, Y. Zhou, J. Wang, T. Wang, 3D simulation of sintering flue gas desulfurization and denitration in a bubbling gas absorbing tower, Powder Technol. 314(2017) 412-426. [10] A. Gómez, N. Fueyo, A. Tomás, Detailed modelling of a flue-gas desulfurization plant, Comput. Chem. Eng. 31(2007) 1419-1431. [11] T. Neveux, Y.L. Moullec, Wet industrial flue gas desulfurization unit:model development and validation on industrial data, Ind. Eng. Chem. Res. 50(2011) 7579-7592. [12] P. Córdoba, Status of Flue Gas Desulphurization (FGD) systems from coal-fired power plants:overview of the physic-chemical control processes of wet limestone FGDs, Fuel 144(2015) 274-286. [13] O. Levenspiel, Chemical Reaction Engineering, Wiley, New York, 1999. [14] Y. Zhong, X. Gao, W. Huo, Z.Y. Luo, M.J. Ni, K.F. Cen, A model for performance optimization of wet flue gas desulfurization systems of power plants, Fuel Process. Technol. 89(11) (2008) 1025-1032. [15] J. Zhu, S.S. Ye, J. Bai, Z. Wu, Z.Y. Liu, Y.F. Yang, A concise algorithm for calculating absorption height in spray tower for wet limestone-gypsum flue gas desulfurization, Fuel Process. Technol. 129(2015) 15-23. [16] L. Marocco, F. Inzoli, Multiphase Euler-Lagrange CFD simulation applied to Wet Flue Gas Desulphurization technology, Int. J. Multiphase Flow 35(2) (2009) 185-194. [17] C. Brogren, H.T. Karlsson, Modeling the absorption of SO2 in a spray scrubber using the penetration theory, Chem. Eng. Sci. 52(18) (1997) 3085-3099. [18] N.K. Yeh, G.T. Rochelle, Liquid-phase mass transfer in spray contactors, AIChE J. 49(9) (2003) 2363-2373. [19] J.B. Angelo, E.N. Lightfoot, D.W. Howard, Generalization of the penetration theory for surface stretch:application to forming and oscillating drops, AIChE J. 12(4) (1966) 751-760. [20] C.T. Hsu, S.M. Shih, Semiempirical equation for liquid-phase mass-transfer coefficient for drops, AIChE J. 39(6) (1993) 1090-1092. [21] D. Eden, M. Luckas, A heat and mass transfer model for the simulation of the wet limestone flue gas scrubbing process, Chem. Eng. Technol. 21(1) (1998) 56-60. [22] J. Warych, M. Szymanowski, Model of the wet limestone flue gas desulfurization process for cost optimization, Ind. Eng. Chem. Res. 40(12) (2001) 2597-2605. [23] L.E. Kallinikos, E.I. Farsari, D.N. Spartinos, N.G. Papayannakos, Simulation of the operation of an industrial wet flue gas desulfurization system, Fuel Process. Technol. 91(12) (2010) 1794-1802. [24] B. Dou, W. Pan, Q. Jin, W. Wang, Y. Li, Prediction of SO2 removal efficiency for wet Flue Gas Desulfurization, Energy Convers. Manag. 50(10) (2009) 2547-2553. [25] D. Jain, J.A.M. Kuipers, N.G. Deen, Numerical modeling of carbon dioxide chemisorption in sodium hydroxide solution in a micro-structured bubble column, Chem. Eng. Sci. 137(2015) 685-696. [26] J.B.W. Frandsen, S. Kiil, J.E. Johnsson, Optimization of a wet FGD pilot plant using fine limestone and organic acids, Chem. Eng. Sci. 56(10) (2001) 3275-3287. [27] S. Kiil, H. Nygaard, J.E. Johnsson, Simulation studies of the influence of HCl absorption on the performance of a wet flue gas desulphurization pilot plant, Chem. Eng. Sci. 57(3) (2002) 347-354. [28] W.D. Deckwer, A. Schumpe, Improved tools for bubble column reactor design and scale-up, Chem. Eng. Sci. 48(5) (1993) 889-911. [29] C. Weiss, U. Wieltsch, Laser optical flow measurements and computational fluid dynamic calculation of spray tower hydrodynamics, Chem. Eng. Res. Des. 83(5) (2005) 492-507. [30] P. Wang, L. Zhuang, G. Dai, Synergistic effect of droplet self-adjustment and rod bank internal on fluid distribution in a WFGD spray column, Chem. Eng. Sci. 162(2017) 227-244. [31] C.T. Crowe, M.P. Sharma, D.E. Stock, The particle-source-in cell (PSI-CELL) model for gas-droplet flow, J. Fluids Eng. 99(2) (1977) 325-332. [32] C. Montanes, S.A. Gomez, N. Fueyo, J.C. Ballesteros, P. Gomez-Yague, Computational evaluation of wall rings in wet flue-gas desulfurization plants, Int. J. Energy Clean Environ. 10(2009) 15-36. [33] Z. Chen, H. Wang, J. Zhuo, C. You, Experimental and numerical study on effects of deflectors on flow field distribution and desulfurization efficiency in spray towers, Fuel Process. Technol. 162(2017) 1-12. [34] M. Qin, Y. Dong, L. Cui, J. Yao, C. Ma, Pilot-scale experiment and simulation optimization of dual-loop wet flue gas desulfurization spray scrubbers, Chem. Eng. Res. Des. 148(2019) 280-290. [35] L. Marocco, Modeling of the fluid dynamics and SO2 absorption in a gas-liquid reactor, Chem. Eng. J. 162(1) (2010) 217-226. [36] P. Wang, G. Dai, Synergistic effect between spraying layers on the performance of the WFGD spray column, Asia Pac. J. Chem. Eng. 13(6) (2018) 1-14. [37] G. Maurer, On the solubility of volatile weak electrolytes in aqueous solutions, ACS Symp. Ser. 133(1980) 139-172. [38] L.N. Plummer, E. Busenberg, The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90℃, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O, Geochim. Cosmochim. Acta 46(6) (1982) 1011-1040. [39] T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k-ε eddy viscosity model for high Reynolds number turbulent flows, Comput. Fluids 24(3) (1995) 227-238. [40] S. Benyahia, J.E. Galvin, Estimation of numerical errors related to some basic assumptions in discrete particle methods, Ind. Eng. Chem. Res. 49(21) (2010) 10588-10605. [41] J.A. Michalski, Aerodynamic characteristics of FGD spray towers, Chem. Eng. Technol. 20(2) (1997) 108-117. [42] J.A. Michalski, Aerodynamic characteristics of flue gas desulfurization spray towersPolydispersity consideration, Ind. Eng. Chem. Res. 39(9) (2000) 3314-3324. [43] S.A. Morsi, A.J. Alexander, An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech. 55(2) (1972) 193-208. [44] P.A. Nelson, T.R. Galloway, Particle-to-fluid heat and mass transfer in dense systems of fine particles, Chem. Eng. Sci. 30(1) (1975) 1-6. [45] H. Montazeri, B. Blocken, J.L.M. Hensen, CFD analysis of the impact of physical parameters on evaporative cooling by a mist spray system, Appl. Therm. Eng. 75(2015) 608-622. [46] E.N. Fuller, P.D. Schettler, J.C. Giddings, A new method for prediction of binary gasphase diffusion coefficients, Ind. Eng. Chem. Res. 58(5) (1966) 18-27. [47] G.H. Newton, J. Kramlich, R. Payne, Modeling the SO2-slurry droplet reaction, AIChE J. 36(12) (1990) 1865-1872. [48] W. Desch, K. Horn, G. Propst, Computation of equilibria in models of flue gas washer plants, Comput. Chem. Eng. 30(2006) 1169-1177. [49] W. Zhang, C. You, Numerical simulation of particulate flows in CFB riser with drag corrections based on particle distribution characterization, Chem. Eng. J. 303(2016) 145-155. [50] R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops and Particles, Academic Press, New York, 1978. |