Chinese Journal of Chemical Engineering ›› 2022, Vol. 43 ›› Issue (3): 222-229.DOI: 10.1016/j.cjche.2022.02.016
Previous Articles Next Articles
Xueting Liu, Chunhui Hu, Jingjing Wu, Peng Cui, Fengyu Wei
Received:
2021-10-21
Revised:
2022-02-12
Online:
2022-04-28
Published:
2022-03-28
Contact:
Fengyu Wei,E-mail:weifyliuj@hfut.edu.cn
Supported by:
Xueting Liu, Chunhui Hu, Jingjing Wu, Peng Cui, Fengyu Wei
通讯作者:
Fengyu Wei,E-mail:weifyliuj@hfut.edu.cn
基金资助:
Xueting Liu, Chunhui Hu, Jingjing Wu, Peng Cui, Fengyu Wei. Defective NH2-UiO-66 (Zr) effectively converting CO2 into cyclic carbonate under ambient pressure, solvent-free and co-catalyst-free conditions[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 222-229.
Xueting Liu, Chunhui Hu, Jingjing Wu, Peng Cui, Fengyu Wei. Defective NH2-UiO-66 (Zr) effectively converting CO2 into cyclic carbonate under ambient pressure, solvent-free and co-catalyst-free conditions[J]. 中国化学工程学报, 2022, 43(3): 222-229.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.02.016
[1] D.X. Ma, B.Y. Li, K. Liu, X.L. Zhang, W.J. Zou, Y.Q. Yang, G.H. Li, Z. Shi, S.H. Feng, Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions, J. Mater. Chem. A 3 (46) (2015) 23136-23142. https://doi.org/10.1039/c5ta07026k [2] S.Y. Liu, N. Suematsu, K. Maruoka, S. Shirakawa, Design of bifunctional quaternary phosphonium salt catalysts for CO2 fixation reaction with epoxides under mild conditions, Green Chem. 18 (17) (2016) 4611-4615 [3] https://doi.org/10.1039/c6gc01630hJ. Steinbauer, L. Longwitz, M. Frank, J. Epping, U. Kragl, T. Werner, Immobilized bifunctional phosphonium salts as recyclable organocatalysts in the cycloaddition of CO2 and epoxides, Green Chem. 19 (2017) 4435-4445 [4] C. Maeda, Y. Miyazaki, T. Ema, Recent progress in catalytic conversions of carbon dioxide, Catal. Sci. Technol. 4 (2014) 1482-1497. https://doi.org/10.1039/c6gc01630h [5] M. Sevilla, W. Sangchoom, N. Balahmar, A.B. Fuertes, R. Mokaya, Highly porous renewable carbons for enhanced storage of energy-related gases (H2 and CO2) at high pressures, ACS Sustain. Chem. Eng. 4 (2016) 4710-4716 [6] B. Li, L.X. Yang, X.B. Luo, J.P. Zou, Quaternary phosphonium salt-functionalized Cr-MIL-101:a bifunctional and efficient catalyst for CO2 cycloaddition with epoxides, J. CO2 Util. 36 (2020) 295-305 [7] J. Tharun, K.M. Bhin, R. Roshan, D.W. Kim, A.C. Kathalikkattil, R. Babu, H.Y. Ahn, Y.S. Won, D.W. Park, Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2, Green Chem, J. 18 (8), (2016) 2479-2487 [8] S. Huh, Direct catalytic conversion of CO2 to cyclic organic carbonates under mild reaction conditions by metal-organic frameworks, Catalysts. 9 (2019) 34-53 [9] B. Schäffner, F. Schäffner, S.P. Verevkin, A. Börner, Organic carbonates as solvents in synthesis and catalysis, Chem. Rev. 110 (2010) 4554-4581 [10] C. Maeda, T. Taniguchi, K. Ogawa, T. Ema, Bifunctional catalysts based on m-phenylene-bridged porphyrin dimer and trimer platforms:synthesis of cyclic carbonates from carbon dioxide and epoxides, Angew. Chem.Int. Ed. 54 (2015) 134-138 [11] C. Carvalho Rocha, T. Onfroy, J. Pilmé, A. Denicourt-Nowicki, A. Roucoux, F. Launay, Experimental and theoretical evidences of the influence of hydrogen bonding on the catalytic activity of a series of 2-hydroxy substituted quaternary ammonium salts in the styrene oxide/CO2 coupling reaction, J. Catal. 333 (2016) 29-39 [12] S. Supasitmongkol, P. Styring, A single centre aluminium(iii) catalyst and TBAB as an ionic organo-catalyst for the homogeneous catalytic synthesis of styrene carbonate, Catal. Sci. Technol. 4 (6) (2014) 1622-1630. https://doi.org/10.1039/c3cy01015e [13] K.R. Roshan, A.C. Kathalikkattil, J. Tharun, D.W. Kim, Y.S. Won, D.W. Park, Amino acid/KI as multi-functional synergistic catalysts for cyclic carbonate synthesis from CO2under mild reaction conditions:A DFT corroborated study, Dalton Trans. 43 (5) (2014) 2023-2031. https://doi.org/10.1039/c3dt52830h [14] L. Liu, S.M. Wang, Z.B. Han, M.L. Ding, D.Q. Yuan, H.L. Jiang, Exceptionally robust in-based metal-organic framework for highly efficient carbon dioxide capture and conversion, Inorg. Chem. 55 (7) (2016) 3558-3565. https://doi.org/10.1021/acs.inorgchem.6b00050 [15] R.C. Luo, X.T. Zhou, W.Y. Zhang, Z.X. Liang, J. Jiang, H.B. Ji, New bi-functional zinc catalysts based on robust and easy-to-handle N-chelating ligands for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions, Green Chem. 16 (9) (2014) 4179-4189. https://doi.org/10.1039/c4gc00671b [16] H.M. He, J.A. Perman, G.S. Zhu, S.Q. Ma, Metal-organic frameworks for CO2 chemical transformations, Small 12 (46) (2016) 6309-6324. https://pubmed.ncbi.nlm.nih.gov/27762496/ [17] Y.S. Kang, Y. Lu, K. Chen, Y. Zhao, P. Wang, W.Y. Sun, Metal-organic frameworks with catalytic centers:From synthesis to catalytic application, Coord. Chem. Rev. 378 (2019) 262-280. http://dx.doi.org/10.1016/j.ccr.2018.02.009 [18] L.G. Ding, B.J. Yao, W.L. Jiang, J.T. Li, Q.J. Fu, Y.N. Li, Z.H. Liu, J.P. Ma, Y.B. Dong, Bifunctional imidazolium-based ionic liquid decorated UiO-67 type MOF for selective CO2 adsorption and catalytic property for CO2 cycloaddition with epoxides, Inorg. Chem. 56 (4) (2017) 2337-2344. https://pubmed.ncbi.nlm.nih.gov/28182424/ [19] S. Yuan, L. Feng, K.C. Wang, J.D. Pang, M. Bosch, C. Lollar, Y.J. Sun, J.S. Qin, X.Y. Yang, P. Zhang, Q. Wang, L.F. Zou, Y.M. Zhang, L.L. Zhang, Y. Fang, J.L. Li, H.C. Zhou, Stable metal-organic frameworks:Design, synthesis, and applications, Adv. Mater. 30 (37) (2018) e1704303. https://pubmed.ncbi.nlm.nih.gov/29430732/ [20] D.R. Sun, Y.H. Fu, W.J. Liu, L. Ye, D.K. Wang, L. Yang, X.Z. Fu, Z.H. Li, Studies on photocatalytic CO2Reduction over NH2-uio-66(Zr) and its derivatives:Towards a better understanding of photocatalysis on metal-organic frameworks, Chem. Eur. J. 19 (42) (2013) 14279-14285. https://doi.org/10.1002/chem.201301728 [21] H.L. Liu, L.N. Chang, C.H. Bai, L.Y. Chen, R. Luque, Y.W. Li, Controllable encapsulation of "clean" metal clusters within MOFs through kinetic modulation:Towards advanced heterogeneous nanocatalysts, Angew. Chem. Int. Ed Engl. 55 (16) (2016) 5019-5023. https://pubmed.ncbi.nlm.nih.gov/26970412/ [22] C.C. Lin, Y.C. Huang, M. Usman, W.H. Chao, W.K. Lin, T.T. Luo, W.T. Whang, C.H. Chen, K.L. Lu, Zr-MOF/polyaniline composite films with exceptional seebeck coefficient for thermoelectric material applications, ACS Appl. Mater. Interfaces 11 (3) (2019) 3400-3406. https://pubmed.ncbi.nlm.nih.gov/30580511/ [23] K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long, Carbon dioxide capture in metal-organic frameworks, Chem. Rev. 112 (2) (2012) 724-781. https://pubmed.ncbi.nlm.nih.gov/22204561/ [24] H.M. He, Y. Song, F.X. Sun, Z. Bian, L.X. Gao, G.S. Zhu, A porous metal-organic framework formed by a V-shaped ligand and Zn(ii) ion with highly selective sensing for nitroaromatic explosives, J. Mater. Chem. A 3 (32) (2015) 16598-16603. https://doi.org/10.1039/c5ta03537f [25] T. Wen, D.X. Zhang, J. Zhang, Two-dimensional copper(I) coordination polymer materials as photocatalysts for the degradation of organic dyes, Inorg. Chem. 52 (1) (2013) 12-14. http://dx.doi.org/10.1021/ic302273h [26] P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Férey, R.E. Morris, C. Serre, Metal-organic frameworks in biomedicine, Chem. Rev. 112 (2) (2012) 1232-1268. https://doi.org/10.1021/cr200256v [27] L.P. Liu, J.Y. Zhang, H.B. Fang, L.P. Chen, C.Y. Su, Metal-organic gel material based on UiO-66-NH2 nanoparticles for improved adsorption and conversion of carbon dioxide, Chem. Asian J. 11 (16) (2016) 2278-2283. https://pubmed.ncbi.nlm.nih.gov/27332669/ [28] F. Hiroyasu, C. Kyle E, O'K. Michae, Y. Omar M, The chemistry and applications of metal-organic frameworks[J]. Science, 341(6149)(2013) 974-974. https://doi.org/10.1039/b902550b [29] J. Tharun, G. Mathai, A.C. Kathalikkattil, R. Roshan, Y.S. Won, S.J. Cho, J.S. Chang, D.W. Park, Exploring the catalytic potential of ZIF-90:Solventless and co-catalyst-free synthesis of propylene carbonate from propylene oxide and CO 2, ChemPlusChem 80 (4) (2015) 715-721. https://pubmed.ncbi.nlm.nih.gov/31973424/ [30] W.Y. Gao, Y. Chen, Y.H. Niu, K. Williams, L. Cash, P.J. Perez, L. Wojtas, J.F. Cai, Y.S. Chen, S.Q. Ma, Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2under ambient conditions, Angew. Chem. Int. Ed. 53 (10) (2014) 2615-2619. https://doi.org/10.1002/anie.201309778 [31] Z.L. Fang, B. Bueken, D.E. De Vos, R.A. Fischer, Defect-engineered metal-organic frameworks, Angew. Chem. Int. Ed. 54 (25) (2015) 7234-7254. https://doi.org/10.1002/anie.201411540 [32] G.C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, K.P. Lillerud, Defect engineering:Tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis, Chem. Mater. 28 (11) (2016) 3749-3761. http://dx.doi.org/10.1021/acs.chemmater.6b00602 [33] S. Dissegna, K. Epp, W.R. Heinz, G. Kieslich, R.A. Fischer, Metal-organic frameworks:Defective metal-organic frameworks (adv. mater. 37/2018), Adv. Mater. 30 (37) (2018) 1870280. https://doi.org/10.1002/adma.201870280 [34] Y.J. Zhao, Q. Zhang, Y.L. Li, R. Zhang, G. Lu, Large-scale synthesis of monodisperse UiO-66 crystals with tunable sizes and missing linker defects via acid/base co-modulation, ACS Appl. Mater. Interfaces 9 (17) (2017) 15079-15085. http://dx.doi.org/10.1021/acsami.7b02887 [35] S.J. Garibay, S.M. Cohen, Isoreticular synthesis and modification of frameworks with the UiO-66 topology, Chem. Commun. (Camb) 46 (41) (2010) 7700-7702. https://pubmed.ncbi.nlm.nih.gov/20871917/ [36] C.A. Trickett, K.J. Gagnon, S. Lee, F. Gándara, H.B. Bürgi, O.M. Yaghi, Definitive molecular level characterization of defects in UiO-66 crystals, Angew. Chem. Int. Ed Engl. 54 (38) (2015) 11162-11167. https://pubmed.ncbi.nlm.nih.gov/26352027/ [37] A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Modulated synthesis of Zr-based metal-organic frameworks:From nano to single crystals, Chemistry 17 (24) (2011) 6643-6651. https://pubmed.ncbi.nlm.nih.gov/21547962/ [38] G.C. Shearer, S. Chavan, J. Ethiraj, J.G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, K.P. Lillerud, Tuned to perfection:Ironing out the defects in metal-organic framework UiO-66, Chem. Mater. 26 (14) (2014) 4068-4071. https://doi.org/10.1021/cm501859p [39] Y.H. Fu, J.Y. Wu, R.F. Du, K. Guo, R. Ma, F.M. Zhang, W.D. Zhu, M.H. Fan, Temperature modulation of defects in NH2-UiO-66(Zr) for photocatalytic CO2 reduction, RSC Adv. 9 (65) (2019) 37733-37738. https://doi.org/10.1039/c9ra08097j [40] K. Tulig, K.S. Walton, An alternative UiO-66 synthesis for HCl-sensitive nanoparticle encapsulation, RSC Adv. 4 (93) (2014) 51080-51083. https://doi.org/10.1039/c4ra08856e [41] F.M. Zhang, S. Zheng, Q. Xiao, Y.J. Zhong, W.D. Zhu, A. Lin, M. Samy El-Shall, Synergetic catalysis of palladium nanoparticles encaged within amine-functionalized UiO-66 in the hydrodeoxygenation of vanillin in water, Green Chem. 18 (9) (2016) 2900-2908. https://doi.org/10.1039/c5gc02615f [42] G.W. Peterson, J.B. DeCoste, F. Fatollahi-Fard, D.K. Britt, Engineering UiO-66-NH2 for toxic gas removal, Ind. Eng. Chem. Res. 53 (2) (2014) 701-707. https://doi.org/10.1021/ie403366d [43] J. Gong, M.J. Katz, F.M. Kerton, Catalytic conversion of glucose to 5-hydroxymethylfurfural using zirconium-containing metal-organic frameworks using microwave heating, RSC Adv. 8 (55) (2018) 31618-31627. https://doi.org/10.1039/c8ra06021e [44] M. Kandiah, S. Usseglio, S. Svelle, U. Olsbye, K.P. Lillerud, M. Tilset, Post-synthetic modification of the metal-organic framework compound UiO-66, J. Mater. Chem. 20 (44) (2010) 9848. https://doi.org/10.1039/c0jm02416c [45] S.Y. Kim, A.R. Kim, J.W. Yoon, H.J. Kim, Y.S. Bae, Creation of mesoporous defects in a microporous metal-organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake, Chem. Eng. J. 335 (2018) 94-100. http://dx.doi.org/10.1016/j.cej.2017.10.078 [46] G.R. Cai, H.L. Jiang, A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability, Angew. Chem. Int. Ed. 56 (2) (2017) 563-567. https://doi.org/10.1002/anie.201610914 [47] Y.J. Qin, X. Han, Y.P. Li, A.J. Han, W.X. Liu, H.J. Xu, J.F. Liu, Hollow mesoporous metal-organic frameworks with enhanced diffusion for highly efficient catalysis, ACS Catal. 10 (11) (2020) 5973-5978. http://dx.doi.org/10.1021/acscatal.0c01432 [48] L. Zhou, X.H. Zhang, Y.L. Chen, Modulated synthesis of zirconium metal-organic framework UiO-66 with enhanced dichloromethane adsorption capacity, Mater. Lett. 197 (2017) 167-170. http://dx.doi.org/10.1016/j.matlet.2017.03.162 [49] X.L. Zhang, N. Zhang, C.X. Gan, Y.F. Liu, L. Chen, C. Zhang, Y.Z. Fang, Synthesis of In2S3/UiO-66 hybrid with enhanced photocatalytic activity towards methyl orange and tetracycline hydrochloride degradation under visible-light irradiation, Mater. Sci. Semicond. Process. 91 (2019) 212-221. http://dx.doi.org/10.1016/j.mssp.2018.11.014 [50] Á. Reyes-Carmona, A. Arango-Díaz, E. Moretti, A. Talon, L. Storaro, M. Lenarda, A. Jiménez-López, E. Rodríguez-Castellón, CuO/CeO2 supported on Zr doped SBA-15 as catalysts for preferential CO oxidation (CO-PROX), J. Power Sources 196 (9) (2011) 4382-4387. http://dx.doi.org/10.1016/j.jpowsour.2010.10.019 [51] R. Ou, W.J. Zhu, L.L. Li, X.Y. Wang, Q. Wang, Q. Gao, A.H. Yuan, J.M. Pan, F. Yang, Boosted capture of volatile organic compounds in adsorption capacity and selectivity by rationally exploiting defect-engineering of UiO-66(Zr), Sep. Purif. Technol. 266 (2021) 118087. http://dx.doi.org/10.1016/j.seppur.2020.118087 [52] K. Xuan, Y.F. Pu, F. Li, A.X. Li, J. Luo, L. Li, F. Wang, N. Zhao, F.K. Xiao, Direct synthesis of dimethyl carbonate from CO2 and methanol over trifluoroacetic acid modulated UiO-66, J. CO2 Util. 27 (2018) 272-282. http://dx.doi.org/10.1016/j.jcou.2018.08.002 [53] H. Wu, Y.S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, W. Zhou, Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption, J. Am. Chem. Soc. 135 (28) (2013) 10525-10532. https://pubmed.ncbi.nlm.nih.gov/23808838/ [54] Q. Ran, Z.B. Yu, R.H. Jiang, L. Qian, Y.P. Hou, F. Yang, F.Y. Li, M.J. Li, Q.Q. Sun, H.Q. Zhang, Path of electron transfer created in S-doped NH2-UiO-66 bridged ZnIn2S4/MoS2 nanosheet heterostructure for boosting photocatalytic hydrogen evolution, Catal. Sci. Technol. 10 (8) (2020) 2531-2539. https://doi.org/10.1039/d0cy00127a [55] J.L. Song, Z.F. Zhang, S.Q. Hu, T.B. Wu, T. Jiang, B.X. Han, MOF-5/n-Bu4NBr:An efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions, Green Chem. 11 (7) (2009) 1031. https://doi.org/10.1039/b902550b [56] B. Mousavi, S. Chaemchuen, B. Moosavi, Z.X. Luo, N. Gholampour, F. Verpoort, Zeolitic imidazole framework-67 as an efficient heterogeneous catalyst for the conversion of CO2 to cyclic carbonates, New J. Chem. 40 (6) (2016) 5170-5176. https://doi.org/10.1039/c6nj00128a [57] Y.W. Ren, Y.C. Shi, J.X. Chen, S.R. Yang, C.R. Qi, H.F. Jiang, Ni(salphen)-based metal-organic framework for the synthesis of cyclic carbonates by cycloaddition of CO2 to epoxides, RSC Adv. 3 (7) (2013) 2167. https://doi.org/10.1039/c2ra22550f [58] P.Z. Li, X.J. Wang, J. Liu, J.S. Lim, R.Q. Zou, Y.L. Zhao, A triazole-containing metal-organic framework as a highly effective and substrate size-dependent catalyst for CO2 conversion, J. Am. Chem. Soc. 138 (7) (2016) 2142-2145. https://doi.org/10.1021/jacs.5b13335 [59] C.M. Miralda, E.E. Macias, M.Q. Zhu, P. Ratnasamy, M.A. Carreon, Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate, ACS Catal. 2 (1) (2012) 180-183. http://dx.doi.org/10.1021/cs200638h [60] P. Patel, B. Parmar, R.I. Kureshy, N.U.H. Khan, E. Suresh, Amine-functionalized Zn(ii) MOF as an efficient multifunctional catalyst for CO2 utilization and sulfoxidation reaction, Dalton Trans. 47 (24) (2018) 8041-8051. https://pubmed.ncbi.nlm.nih.gov/29872804/ [61] X.Q. Huang, Y.F. Chen, Z.G. Lin, X.Q. Ren, Y.N. Song, Z.Z. Xu, X.M. Dong, X.G. Li, C.W. Hu, B. Wang, Zn-BTC MOFs with active metal sites synthesized via a structure-directing approach for highly efficient carbon conversion, Chem. Commun. 50 (20) (2014) 2624-2627. https://doi.org/10.1039/c3cc49187k [62] F. Della Monica, A. Buonerba, A. Grassi, C. Capacchione, S. Milione, Glycidol:An hydroxyl-containing epoxide playing the double role of substrate and catalyst for CO2 cycloaddition reactions, ChemSusChem 9 (24) (2016) 3457-3464. https://pubmed.ncbi.nlm.nih.gov/27870388/ [63] W. Liu, G.H. Lu, Carbonation of epoxidized methyl soyates in tetrabutylammonium bromide-based deep eutectic solvents, J. Oleo Sci. 67 (5) (2018) 609-616. https://pubmed.ncbi.nlm.nih.gov/29628488/ [64] R. Babu, A.C. Kathalikkattil, R. Roshan, J. Tharun, D.W. Kim, D.W. Park, Dual-porous metal organic framework for room temperature CO2 fixation via cyclic carbonate synthesis, Green Chem. 18 (1) (2016) 232-242. https://doi.org/10.1039/c5gc01763g [65] D.X. Ma, Y.W. Zhang, S.S. Jiao, J.X. Li, K. Liu, Z. Shi, A tri-functional metal-organic framework heterogeneous catalyst for efficient conversion of CO2 under mild and co-catalyst free conditions, Chem. Commun. (Camb) 55 (95) (2019) 14347-14350. https://pubmed.ncbi.nlm.nih.gov/31720630/ [66] B.N. Song, L. Guo, R. Zhang, X.G. Zhao, H.M. Gan, C. Chen, J.Z. Chen, W.W. Zhu, Z.S. Hou, The polymeric quaternary ammonium salt supported on silica gel as catalyst for the efficient synthesis of cyclic carbonate, J. CO2 Util. 6 (2014) 62-68. http://dx.doi.org/10.1016/j.jcou.2014.03.005 [67] J.Q. Wang, D.L. Kong, J.Y. Chen, F. Cai, L.N. He, Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions, J. Mol. Catal. A Chem. 249 (1-2) (2006) 143-148. http://dx.doi.org/10.1016/j.molcata.2006.01.008 [68] J.Q. Wang, D.L. Kong, J.Y. Chen, F. Cai, L.N. He, Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions, J. Mol. Catal. A Chem. 249 (2006) 143-148 |
[1] | Jiahao Lu, Zhimeng Wang, Qi Zhang, Cheng Sun, Yanyan Zhou, Sijia Wang, Xiangyun Qiu, Shoudong Xu, Rentian Chen, Tao Wei. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 80-89. |
[2] | Jitendra Diwakar, Selvamani Arumugam, Bhavna Saini, Anup Prakash Tathod, Nagabhatla Viswanadham. Mesoporous titanium-aluminosilicate as an efficient catalyst for selective oxidation of cyclohexene at mild reaction conditions [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 257-265. |
[3] | Yachen Deng, Shifu Wang, Yanqiang Huang, Xuning Li. Structural reconstruction of Sn-based metal-organic frameworks for efficient electrochemical CO2 reduction to formate [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 353-359. |
[4] | Zhen Lu, Jie He, Bogeng Guo, Yulai Zhao, Jingyu Cai, Longqiang Xiao, Linxi Hou. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 110-115. |
[5] | Guorong Wu, Qiangwen Fan, Wenjie Sun, Zhiwu Yu, Zhiqian Jia, Jianguo Ma. Regulatable pervaporation performance of Zn-MOFs/polydimethylsiloxane mixed matrix pervaporation membranes [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 312-318. |
[6] | Jinlong Li, Xiaoqing Wang, Puxu Liu, Xiaohua Liu, Libo Li, Jinping Li. Shaping of metal-organic frameworks through a calcium alginate method towards ethylene/ethane separation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 17-24. |
[7] | Daofei Lv, Junhao Xu, Pingjun Zhou, Shi Tu, Feng Xu, Jian Yan, Hongxia Xi, Zewei Liu, Wenbing Yuan, Qiang Fu, Xin Chen, Qibin Xia. Highly selective separation of propylene/propane mixture on cost-effectively four-carbon linkers based metal-organic frameworks [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 126-134. |
[8] | Shi Yuan, Yang Li, Ruosang Qiu, Yun Xia, Cordelia Selomulya, Xiwang Zhang. Minimising non-selective defects in ultrathin reduced graphene oxide membranes with graphene quantum dots for enhanced water and NaCl separation [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 278-285. |
[9] | Xuemei Wu, Minghui Tan, Bing Xu, Shengying Zhao, Qingxiang Ma, Yingluo He, Chunyang Zeng, Guohui Yang, Noritatsu Tsubaki, Yisheng Tan. Tuning the crystallite size of monoclinic ZrO2 to reveal critical roles of surface defects on m-ZrO2 catalyst for direct synthesis of isobutene from syngas [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 211-219. |
[10] | Mingming Zhai, Tomohisa Yoshioka, Jianhua Yang, Jinqu Wang, Dinglin Zhang, Jinming Lu, Yan Zhang. Molecular dynamics simulation of small gas molecule permeation through CAU-1 membrane [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 104-111. |
[11] | Xianqiang Zheng, Yanlong Shen, Shitao Wang, Ke Huang, Dapeng Cao. Selective adsorption of SF6 in covalent- and metal-organic frameworks [J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 88-95. |
[12] | Fangjie Lu, Dong Xu, Yusheng Lu, Bin Dai, Mingyuan Zhu. High nitrogen carbon material with rich defects as a highly efficient metal-free catalyst for excellent catalytic performance of acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 196-203. |
[13] | Xiao Liang, Qing Li, Zhiyuan Shi, Shaowei Bai, Quanshun Li. Immobilization of urease in metal-organic frameworks via biomimetic mineralization and its application in urea degradation [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2173-2180. |
[14] | Ling Yang, Wei Zhou, Hao Li, Ali Alsalme, Litao Jia, Jiangfeng Yang, Jinping Li, Libo Li, Banglin Chen. Reversed ethane/ethylene adsorption in a metal-organic framework via introduction of oxygen [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 593-597. |
[15] | Qiachun Lin, Zesheng Li, Tingjian Lin, Bolin Li, Xichun Liao, Huiqing Yu, Changlin Yu. Controlled preparation of P-doped g-C3N4 nanosheets for efficient photocatalytic hydrogen production [J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2677-2688. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||