Chinese Journal of Chemical Engineering ›› 2022, Vol. 48 ›› Issue (8): 176-190.DOI: 10.1016/j.cjche.2021.11.004
Previous Articles Next Articles
Yishuang Wang1, Na Li1, Mingqiang Chen1, Defang Liang1, Chang Li2, Quan Liu2, Zhonglian Yang1, Jun Wang1
Received:
2021-07-06
Revised:
2021-11-01
Online:
2022-09-30
Published:
2022-08-28
Contact:
Mingqiang Chen,E-mail:mqchen@aust.edu.cn
Supported by:
Yishuang Wang1, Na Li1, Mingqiang Chen1, Defang Liang1, Chang Li2, Quan Liu2, Zhonglian Yang1, Jun Wang1
通讯作者:
Mingqiang Chen,E-mail:mqchen@aust.edu.cn
基金资助:
Yishuang Wang, Na Li, Mingqiang Chen, Defang Liang, Chang Li, Quan Liu, Zhonglian Yang, Jun Wang. Glycerol steam reforming over hydrothermal synthetic Ni-Ca/attapulgite for green hydrogen generation[J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 176-190.
Yishuang Wang, Na Li, Mingqiang Chen, Defang Liang, Chang Li, Quan Liu, Zhonglian Yang, Jun Wang. Glycerol steam reforming over hydrothermal synthetic Ni-Ca/attapulgite for green hydrogen generation[J]. 中国化学工程学报, 2022, 48(8): 176-190.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.11.004
[1] N.A. Roslan, S.Z. Abidin, A. Ideris, D.V.N. Vo, A review on glycerol reforming processes over Ni-based catalyst for hydrogen and syngas productions, Int. J. Hydrog. Energy 45 (36) (2020) 18466–18489 [2] B.V. Ayodele, Tuan Ab Rashid Bin Tuan Abdullah, M.A. Alsaffar, S.I. Mustapa, S.F. Salleh, Recent advances in renewable hydrogen production by thermo-catalytic conversion of biomass-derived glycerol: Overview of prospects and challenges, Int. J. Hydrog. Energy 45 (36) (2020) 18160–18185 [3] H.M. Khan, C.H. Ali, T. Iqbal, S. Yasin, M. Sulaiman, H. Mahmood, M. Raashid, M. Pasha, B.Z. Mu, Current scenario and potential of biodiesel production from waste cooking oil in Pakistan: an overview, Chin. J. Chem. Eng. 27 (10) (2019) 2238–2250 [4] S. Rezania, B. Oryani, J. Park, B. Hashemi, K.K. Yadav, E.E. Kwon, J. Hur, J. Cho, Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications, Energy Convers. Manag. 201 (2019) 112155 [5] J. Gupta, M. Agarwal, A.K. Dalai, An overview on the recent advancements of sustainable heterogeneous catalysts and prominent continuous reactor for biodiesel production, J. Ind. Eng. Chem. 88 (2020) 58–77 [6] Y.S. Wang, M.Q. Chen, Z.L. Yang, T. Liang, S.M. Liu, Z.S. Zhou, X.J. Li, Bimetallic Ni-M (M = Co, Cu and Zn) supported on attapulgite as catalysts for hydrogen production from glycerol steam reforming, Appl. Catal. A: Gen. 550 (2018) 214–227 [7] K. Gao, O.A. Sahraei, M.C. Iliuta, Development of residue coal fly ash supported nickel catalyst for H2 production via glycerol steam reforming, Appl. Catal. B: Environ. 291 (2021) 119958 [8] S.A.N.M. Rahim, C.S. Lee, F. Abnisa, M.K. Aroua, W.A.W. Daud, P. Cognet, Y. de Pérès, A review of recent developments on kinetics parameters for glycerol electrochemical conversion - A by-product of biodiesel, Sci. Total. Environ. 705 (2020) 135137 [9] S. Danov, A. Esipovich, A. Belousov, A. Rogozhin, Gas-phase dehydration of glycerol over commercial Pt/γ-Al2O3 catalysts, Chin. J. Chem. Eng. 23 (7) (2015) 1138–1146 [10] M. El Doukkali, A. Iriondo, I. Gandarias, Enhanced catalytic upgrading of glycerol into high value-added H2 and propanediols: Recent developments and future perspectives, Mol. Catal. 490 (2020) 110928 [11] J.M. Silva, M.A. Soria, L.M. Madeira, Challenges and strategies for optimization of glycerol steam reforming process, Renew. Sustain. Energy Rev. 42 (2015) 1187–1213 [12] B.L. Dou, Y.C. Song, C. Wang, H.S. Chen, Y.J. Xu, Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges, Renew. Sustain. Energy Rev. 30 (2014) 950–960 [13] H. Zhou, S.F. Liu, F.L. Jing, S.Z. Luo, J. Shen, Y.P. Pang, W. Chu, Synergetic Bimetallic NiCo/CNT Catalyst for Hydrogen Production by Glycerol Steam Reforming: Effects of Metal Species Distribution, Ind. Eng. Chem. Res. 59 (2020) 17259–17268 [14] M. Shokrollahi Yancheshmeh, O. Alizadeh Sahraei, M. Aissaoui, M.C. Iliuta, A novel synthesis of NiAl2O4 spinel from a Ni-Al mixed-metal alkoxide as a highly efficient catalyst for hydrogen production by glycerol steam reforming, Appl. Catal. B: Environ. 265 (2020) 118535 [15] F.L. Jing, S.F. Liu, R. Wang, X.Y. Li, Z. Yan, S.Z. Luo, W. Chu, Hydrogen production through glycerol steam reforming over the NiCexAl catalysts, Renew. Energy 158 (2020) 192–201 [16] M.Q. Chen, Z.S. Zhou, Y.S. Wang, T. Liang, X.J. Li, Z.L. Yang, M.G. Chen, J. Wang, Effects of attapulgite-supported transition metals catalysts on glycerol steam reforming for hydrogen production, Int. J. Hydrog. Energy 43 (45) (2018) 20451–20464 [17] K. Polychronopoulou, N.D. Charisiou, G.I. Siakavelas, A.A. AlKhoori, V. Sebastian, S.J. Hinder, M.A. Baker, M.A. Goula, Ce–Sm–xCu cost-efficient catalysts for H2 production through the glycerol steam reforming reaction, Sustain. Energy Fuels 3 (3) (2019) 673–691 [18] D. Li, X.Y. Li, J.L. Gong, Catalytic reforming of oxygenates: state of the art and future prospects, Chem Rev 116 (19) (2016) 11529–11653 [19] S.O. Omarov, D.A. Sladkovskiy, K.D. Martinson, M. Peurla, A. Aho, D.Y. Murzin, V.I. Popkov, Influence of the initial state of ZrO2 on genesis, activity and stability of Ni/ZrO2 catalysts for steam reforming of glycerol, Appl. Catal. A: Gen. 616 (2021) 118098 [20] F. Bossola, X.I. Pereira-Hernández, C. Evangelisti, Y. Wang, V. Dal Santo, Investigation of the promoting effect of Mn on a Pt/C catalyst for the steam and aqueous phase reforming of glycerol, J. Catal. 349 (2017) 75–83 [21] T. Montini, R. Singh, P. Das, B. Lorenzut, N. Bertero, P. Riello, A. Benedetti, G. Giambastiani, C. Bianchini, S. Zinoviev, S. Miertus, P. Fornasiero, Renewable H2 from glycerol steam reforming: effect of La2O3 and CeO2 addition to Pt/Al2O3 catalysts, ChemSusChem 3 (5) (2010) 619–628 [22] R. Sundari, P.D. Vaidya, Reaction kinetics of glycerol steam reforming using a Ru/Al2O3 catalyst, Energy Fuels 26 (7) (2012) 4195–4204 [23] A. Gallo, C. Pirovano, M. Marelli, R. Psaro, V. dal Santo, Hydrogen production by glycerol steam reforming with Ru-based catalysts: a study on Sn doping, Chem. Vap. Deposition 16 (10–12) (2010) 305–310 [24] S.Z. Liu, Z. Yan, Y.Y. Zhang, R. Wang, S.Z. Luo, F.L. Jing, W. Chu, Carbon nanotubes supported nickel as the highly efficient catalyst for hydrogen production through glycerol steam reforming, ACS Sustainable Chem. Eng. 6 (11) (2018) 14403–14413 [25] S. Ramesh, N.J. Venkatesha, Template free synthesis of Ni-perovskite: an efficient catalyst for hydrogen production by steam reforming of bioglycerol, ACS Sustainable Chem. Eng. 5 (2) (2017) 1339–1346 [26] R. Moreira, A. Moral, F. Bimbela, A. Portugal, A. Ferreira, J.L. Sanchez, L.M. Gandía, Syngas production via catalytic oxidative steam reforming of glycerol using a Co/Al coprecipitated catalyst and different bed fillers, Fuel Process. Technol. 189 (2019) 120–133 [27] A. Carrero, A.J. Vizcaíno, J.A. Calles, L. García-Moreno, Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La, J. Energy Chem. 26 (1) (2017) 42–48 [28] L.A. Calderón, A. Montoya, A. Soon, C. Stampfl, Non-dissociative adsorption of glycerol on the (111) surface of Ni and Pt-based metallic systems: Hints on reforming activity from d-band center, Mol. Catal. 474 (2019) 110412 [29] Y.M. Sun, D.F. Liang, Y.S. Wang, M.Q. Chen, J.X. Hu, G.W. Sun, J.J. Shi, M.G. Chen, J. Wang, Producing hydrogen from steam reforming of bio-oil derived oxygenated model compounds by utilizing Ce-modified Ni/attapulgite catalysts, Catal. Lett. (2021) 1–16 [30] Z.M. Zhang, Y.R. Wang, K. Sun, Y.W. Shao, L.J. Zhang, S. Zhang, X. Zhang, Q. Liu, Z.H. Chen, X. Hu, Steam reforming of acetic acid over Ni-Ba/Al2O3 catalysts: Impacts of Barium addition on coking behaviors and formation of reaction intermediates, J. Energy Chem. 43 (2020) 208–219 [31] Z.J. Yu, X. Hu, P. Jia, Z.M. Zhang, D.H. Dong, G.Z. Hu, S. Hu, Y. Wang, J. Xiang, Steam reforming of acetic acid over nickel-based catalysts: The intrinsic effects of nickel precursors on behaviors of nickel catalysts, Appl. Catal. B: Environ. 237 (2018) 538–553 [32] J.J. Li, X.L. Mei, L.J. Zhang, Z.J. Yu, Q. Liu, T. Wei, W.B. Wu, D.H. Dong, L.L. Xu, X. Hu, A comparative study of catalytic behaviors of Mn, Fe, Co, Ni, Cu and Zn-Based catalysts in steam reforming of methanol, acetic acid and acetone, Int. J. Hydrog. Energy 45 (6) (2020) 3815–3832 [33] T. Liang, Y.S. Wang, M.Q. Chen, Z.L. Yang, S.M. Liu, Z.S. Zhou, X.J. Li, Steam reforming of phenol-ethanol to produce hydrogen over bimetallic NiCu catalysts supported on sepiolite, Int. J. Hydrog. Energy 42 (47) (2017) 28233–28246 [34] S.R. Wang, F. Zhang, Q.J. Cai, X.B. Li, L.J. Zhu, Q. Wang, Z.Y. Luo, Catalytic steam reforming of bio-oil model compounds for hydrogen production over coal ash supported Ni catalyst, Int. J. Hydrog. Energy 39 (5) (2014) 2018–2025 [35] M.J. Wang, F. Zhang, S.R. Wang, Effect of La2O3 replacement on γ-Al2O3 supported nickel catalysts for acetic acid steam reforming, Int. J. Hydrog. Energy 42 (32) (2017) 20540–20548 [36] J.H. Chen, M.J. Wang, S.R. Wang, X.B. Li, Hydrogen production via steam reforming of acetic acid over biochar-supported nickel catalysts, Int. J. Hydrog. Energy 43 (39) (2018) 18160–18168 [37] A. Kumar, R. Prasad, Y.C. Sharma, Ethanol steam reforming study over ZSM-5 supported cobalt versus nickel catalyst for renewable hydrogen generation, Chin. J. Chem. Eng. 27 (3) (2019) 677–684 [38] C. Shen, W.Q. Zhou, H. Yu, L. Du, Ni nanoparticles supported on carbon as efficient catalysts for steam reforming of toluene (model tar), Chin. J. Chem. Eng. 26 (2) (2018) 322–329 [39] X.L. Li, Z.M. Zhang, L.J. Zhang, H.L. Fan, X.L. Li, Q. Liu, S. Wang, X. Hu, Investigation of coking behaviors of model compounds in bio-oil during steam reforming, Fuel 265 (2020) 116961 [40] A.D. Shejale, G.D. Yadav, Ni–Cu and Ni–Co supported on La–Mg based metal oxides prepared by coprecipitation and impregnation for superior hydrogen production via steam reforming of glycerol, Ind. Eng. Chem. Res. 57 (14) (2018) 4785–4797 [41] M. Saidi, P. Moradi, Conversion of biodiesel synthesis waste to hydrogen in membrane reactor: Theoretical study of glycerol steam reforming, Int. J. Hydrog. Energy 45 (15) (2020) 8715–8726 [42] G.W. Wu, S.R. Li, C.X. Zhang, T. Wang, J.L. Gong, Glycerol steam reforming over perovskite-derived nickel-based catalysts, Appl. Catal. B: Environ. 144 (2014) 277–285 [43] K. Kamonsuangkasem, S. Therdthianwong, A. Therdthianwong, N. Thammajak, Remarkable activity and stability of Ni catalyst supported on CeO2-Al2O3 via CeAlO3 perovskite towards glycerol steam reforming for hydrogen production, Appl. Catal. B: Environ. 218 (2017) 650–663 [44] S. Al-Salihi, R. Abrokwah, W. Dade, V. Deshmane, T. Hossain, D. Kuila, Renewable hydrogen from glycerol steam reforming using Co-Ni-MgO based SBA-15 nanocatalysts, Int. J. Hydrog. Energy 45 (28) (2020) 14183–14198 [45] J.P.D.S.Q. Menezes, R.L. Manfro, M.M.V.M. Souza, Hydrogen production from glycerol steam reforming over nickel catalysts supported on alumina and niobia: Deactivation process, effect of reaction conditions and kinetic modeling, Int. J. Hydrog. Energy 43 (32) (2018) 15064–15082 [46] M.Q. Chen, Y.S. Wang, Z.L. Yang, T. Liang, S.M. Liu, Z.S. Zhou, X.J. Li, Effect of Mg-modified mesoporous Ni/Attapulgite catalysts on catalytic performance and resistance to carbon deposition for ethanol steam reforming, Fuel 220 (2018) 32–46 [47] Y.S. Wang, M.Q. Chen, X.J. Li, Z.L. Yang, T. Liang, Z.S. Zhou, Y. Cao, Hydrogen production via steam reforming of ethylene glycol over Attapulgite supported nickel catalysts, Int. J. Hydrog. Energy 43 (45) (2018) 20438–20450 [48] K. Bizkarra, V.L. Barrio, L. Gartzia-Rivero, J. Ba?uelos, I. López-Arbeloa, J.F. Cambra, Hydrogen production from a model bio-oil/bio-glycerol mixture through steam reforming using Zeolite L supported catalysts, Int. J. Hydrog. Energy 44 (3) (2019) 1492–1504 [49] K.F.M. Elias, A.F. Lucrédio, E.M. Assaf, Effect of CaO addition on acid properties of Ni-Ca/Al2O3 catalysts applied to ethanol steam reforming, Int. J. Hydrog. Energy 38 (11) (2013) 4407–4417 [50] Y.W. Zheng, L. Tao, Y.B. Huang, C. Liu, Z. Wang, Z.F. Zheng, Improving aromatic hydrocarbon content from catalytic pyrolysis upgrading of biomass on a CaO/HZSM-5 dual-catalyst, J. Anal. Appl. Pyrolysis 140 (2019) 355–366 [51] A.Z. Xu, W.H. Zhou, X.D. Zhang, B.F. Zhao, L. Chen, L.Z. Sun, W.J. Ding, S.X. Yang, H.B. Guan, B. Bai, Gas production by catalytic pyrolysis of herb residues using Ni/CaO catalysts, J. Anal. Appl. Pyrolysis 130 (2018) 216–223 [52] H.Y. Sun, Q.L. Zhang, J.J. Wen, T. Tang, H.M. Wang, M. Liu, P. Ning, L. Deng, Y.Z. Shi, Insight into the role of CaO in coke-resistant over Ni-HMS catalysts for CO2 reforming of methane, Appl. Surf. Sci. 521 (2020) 146395 [53] A. Bao, K. Liew, J.L. Li, Fischer-Tropsch synthesis on CaO-promoted Co/Al2O3 catalysts, J. Mol. Catal. A: Chem. 304 (1–2) (2009) 47–51 [54] R.Z. Chu, W.X. Hou, X.L. Meng, T.T. Xu, Z.Y. Miao, G.G. Wu, L. Bai, Catalytic kinetics of dimethyl ether one-step synthesis over CeO2-CaO-Pd/HZSM-5 catalyst in sulfur-containing syngas process, Chin. J. Chem. Eng. 24 (12) (2016) 1735–1741 [55] D.A. Sun, Y.M. Du, Z.X. Wang, J.W. Zhang, Y. Li, J.Y. Li, L.G. Kou, C.Y. Li, J.W. Li, H. Feng, J. Lu, Effects of CaO addition on Ni/CeO2-ZrO2-Al2O3 coated monolith catalysts for steam reforming of N-decane, Int. J. Hydrog. Energy 45 (33) (2020) 16421–16431 [56] V. Vazquez Thyssen, E. Moreira Assaf, Ni/CaO-SiO2 catalysts for assessment in steam reforming reaction of acetol, Fuel 254 (2019) 115592 [57] J. Ashok, Y. Kathiraser, M.L. Ang, S. Kawi, Bi-functional hydrotalcite-derived NiO-CaO-Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions, Appl. Catal. B: Environ. 172-173 (2015) 116–128 [58] M. Broda, A.M. Kierzkowska, D. Baudouin, Q. Imtiaz, C. Copéret, C.R. Müller, Sorbent-enhanced methane reforming over a Ni–Ca-based, bifunctional catalyst sorbent, ACS Catal. 2 (8) (2012) 1635–1646 [59] P. Xu, Z.M. Zhou, C.J. Zhao, Z.M. Cheng, Catalytic performance of Ni/CaO-Ca5Al6O14 bifunctional catalyst extrudate in sorption-enhanced steam methane reforming, Catal. Today 259 (2016) 347–353 [60] B. Jiang, B.L. Dou, K.Q. Wang, C. Zhang, M.J. Li, H.S. Chen, Y.J. Xu, Sorption enhanced steam reforming of biodiesel by-product glycerol on Ni-CaO-MMT multifunctional catalysts, Chem. Eng. J. 313 (2017) 207–216 [61] M. Yang, J.H. Dai, L.J. Wang, Y. Li, Y. Song, First principles study of structural stability against the distribution of Mg and Al atoms and adsorption behaviors of heavy metals of attapulgite, Comput. Mater. Sci. 169 (2019) 109106 [62] F.L. Yang, J.S. Weng, J.J. Ding, Z.Y. Zhao, L.Z. Qin, F.F. Xia, Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay, attapulgite, Renew. Energy 151 (2020) 829–836 [63] C. Cerdá-Moreno, A. Chica, S. Keller, C. Rautenberg, U. Bentrup, Ni-sepiolite and Ni-todorokite as efficient CO2 methanation catalysts: Mechanistic insight by operando DRIFTS, Appl. Catal. B: Environ. 264 (2020) 118546 [64] M.Q. Chen, X.J. Li, Y.S. Wang, C.S. Wang, T. Liang, H. Zhang, Z.L. Yang, Z.S. Zhou, J. Wang, Hydrogen generation by steam reforming of tar model compounds using lanthanum modified Ni/sepiolite catalysts, Energy Convers. Manag. 184 (2019) 315–326 [65] M.Q. Chen, C.S. Wang, Y.S. Wang, Z.Y. Tang, Z.L. Yang, H. Zhang, J. Wang, Hydrogen production from ethanol steam reforming: Effect of Ce content on catalytic performance of Co/Sepiolite catalyst, Fuel 247 (2019) 344–355 [66] K. Peng, J.W. Wang, H.J. Wang, X.Y. Li, P.F. Wan, H.Y. Zhang, L.Q. Bai, MoS2 nanosheets supported on carbon hybridized montmorillonite as an efficient heterogeneous catalyst in aqueous phase, Appl. Clay Sci. 183 (2019) 105346 [67] A. Phukan, S.J. Borah, P. Bordoloi, K. Sharma, B.J. Borah, P.P. Sarmah, D.K. Dutta, An efficient and robust heterogeneous mesoporous montmorillonite clay catalyst for the Biginelli type reactions, Adv. Powder Technol. 28 (6) (2017) 1585–1592 [68] Y.S. Wang, M.Q. Chen, T. Liang, Z.L. Yang, J. Yang, S.M. Liu, Hydrogen generation from catalytic steam reforming of acetic acid by Ni/attapulgite catalysts, Catalysts 6 (11) (2016) 172 [69] Y.S. Wang, M.Q. Chen, J. Yang, S.M. Liu, Z.L. Yang, J. Wang, T. Liang, Hydrogen production from steam reforming of acetic acid over Ni-Fe/palygorskite modified with cerium, BioResources 12 (3) (2017) 4830–4853. DOI:10.15376/biores.12.3.4830-4853 [70] Y.S. Wang, C.S. Wang, M.Q. Chen, Z.Y. Tang, Z.L. Yang, J.X. Hu, H. Zhang, Hydrogen production from steam reforming ethanol over Ni/attapulgite catalysts - Part I: Effect of nickel content, Fuel Process. Technol. 192 (2019) 227–238 [71] Y.F. Zhang, M. Park, H.Y. Kim, S.J. Park, Moderated surface defects of Ni particles encapsulated with NiO nanofibers as supercapacitor with high capacitance and energy density, J. Colloid Interface Sci. 500 (2017) 155–163 [72] G.K. Reddy, S. Quillin, P. Smirniotis, Influence of the synthesis method on the structure and CO2 adsorption properties of Ca/Zr sorbents, Energy Fuels 28 (5) (2014) 3292–3299 [73] S.M. Kim, Y.J. Lee, J.W. Bae, H.S. Potdar, K.W. Jun, Synthesis and characterization of a highly active alumina catalyst for methanol dehydration to dimethyl ether, Appl. Catal. A: Gen. 348 (1) (2008) 113–120 [74] K.N. Papageridis, N.D. Charisiou, S. Douvartzides, V. Sebastian, S.J. Hinder, M.A. Baker, A.A. AlKhoori, S.I. AlKhoori, K. Polychronopoulou, M.A. Goula, Continuous selective deoxygenation of palm oil for renewable diesel production over Ni catalysts supported on Al2O3 and La2O3–Al2O3, RSC Adv. 11 (15) (2021) 8569–8584 [75] R. Huang, C. Lim, M.G. Jang, J.Y. Hwang, J.W. Han, Exsolved metal-boosted active perovskite oxide catalyst for stable water gas shift reaction, J. Catal. 400 (2021) 148–159 [76] M.Q. Chen, D.F. Liang, Y.S. Wang, C.S. Wang, Z.Y. Tang, C. Li, J.X. Hu, W. Cheng, Z.L. Yang, H. Zhang, J. Wang, Hydrogen production by ethanol steam reforming over M-Ni/sepiolite (M = La, Mg or Ca) catalysts, Int. J. Hydrog. Energy 46 (42) (2021) 21796–21811 [77] Y.S. Wang, D.F. Liang, C.S. Wang, M.Q. Chen, Z.Y. Tang, J.X. Hu, Z.L. Yang, H. Zhang, J. Wang, S.M. Liu, Influence of calcination temperature of Ni/Attapulgite on hydrogen production by steam reforming ethanol, Renew. Energy 160 (2020) 597–611 [78] C. Montero, A. Ochoa, P. Casta?o, J. Bilbao, A.G. Gayubo, Monitoring Ni0 and coke evolution during the deactivation of a Ni/La2O3-αAl2O3 catalyst in ethanol steam reforming in a fluidized bed, J. Catal. 331 (2015) 181–192 [79] A. Ochoa, I. Barbarias, M. Artetxe, A.G. Gayubo, M. Olazar, J. Bilbao, P. Casta?o, Deactivation dynamics of a Ni supported catalyst during the steam reforming of volatiles from waste polyethylene pyrolysis, Appl. Catal. B: Environ. 209 (2017) 554–565 |
[1] | Baoyu Liu, Feng Xiong, Jianwen Zhang, Manna Wang, Yi Huang, Yanxiong Fang, Jinxiang Dong. Enhanced ortho-selective t–butylation of phenol over sulfonic acid functionalized mesopore MTW zeolites [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 1-7. |
[2] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[3] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 240-250. |
[4] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 1-9. |
[5] | Chenyang Zhao, Yinhan Cheng, Guangfei Qu, Yongheng Yuan, Fenghui Wu, Ye Liu, Shan Liu, Junyan Li, Ping Ning. High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(II)/Cu(II) composite [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 98-108. |
[6] | Juan Du, Aibing Chen, Senlin Hou, Xueqing Gao. Self-deposition for mesoporous carbon nanosheet with supercapacitor application [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 34-40. |
[7] | Mengting Liu, Xuexue Dong, Zengjing Guo, Aihua Yuan, Shuying Gao, Fu Yang. Enabling tandem oxidation of benzene to benzenediol over integrated neighboring V-Cu oxides in mesoporous silica [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 236-245. |
[8] | Qian Zhu, Yan Zhuang, Hongqing Zhao, Peng Zhan, Cong Ren, Changsheng Su, Wenqiang Ren, Jiawen Zhang, Di Cai, Peiyong Qin. 2,5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS2/CdIn2S4 flower-like heterojunctions [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 180-191. |
[9] | Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 101-123. |
[10] | Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 317-323. |
[11] | Shuo Li, Jianlin Cao, Xiang Feng, Yupeng Du, De Chen, Chaohe Yang, Wenhua Wang, Wanzhong Ren. Insights into the confinement effect on isobutane alkylation with C4 olefin catalyzed by zeolite catalyst: A combined theoretical and experimental study [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 174-184. |
[12] | Zhouxin Chang, Feng Yu, Zhisong Liu, Zijun Wang, Jiangbing Li, Bin Dai, Jinli Zhang. Ni-Al mixed metal oxide with rich oxygen vacancies: CO methanation performance and density functional theory study [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 73-83. |
[13] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 133-142. |
[14] | Feng Guo, Zhihao Chen, Xiliu Huang, Longwen Cao, Xiaofang Cheng, Weilong Shi, Lizhuang Chen. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 157-168. |
[15] | Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 392-401. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||