Chinese Journal of Chemical Engineering ›› 2022, Vol. 50 ›› Issue (10): 29-42.DOI: 10.1016/j.cjche.2022.07.027
• Review • Previous Articles Next Articles
Sihan Li1, Yuxuan Yang1, Kuo Su1, Bao Zhang1,2,3, Yaqing Feng1,2,3
Received:
2022-03-17
Revised:
2022-07-24
Online:
2023-01-04
Published:
2022-10-28
Contact:
Bao Zhang,E-mail:baozhang@tju.edu.cn;Yaqing Feng,E-mail:yafeng@tju.edu.cn
Supported by:
Sihan Li1, Yuxuan Yang1, Kuo Su1, Bao Zhang1,2,3, Yaqing Feng1,2,3
通讯作者:
Bao Zhang,E-mail:baozhang@tju.edu.cn;Yaqing Feng,E-mail:yafeng@tju.edu.cn
基金资助:
Sihan Li, Yuxuan Yang, Kuo Su, Bao Zhang, Yaqing Feng. Dopant-free small molecule hole transport materials based on triphenylamine derivatives for perovskite solar cells[J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 29-42.
Sihan Li, Yuxuan Yang, Kuo Su, Bao Zhang, Yaqing Feng. Dopant-free small molecule hole transport materials based on triphenylamine derivatives for perovskite solar cells[J]. 中国化学工程学报, 2022, 50(10): 29-42.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.07.027
[1] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (17) (2009) 6050-6051.https://pubmed.ncbi.nlm.nih.gov/19366264/ [2] Y. Zhang, Z.F. Fei, P. Gao, Y.H. Lee, F.F. Tirani, R. Scopelliti, Y.Q. Feng, P.J. Dyson, M.K. Nazeeruddin, A strategy to produce high efficiency, high stability perovskite solar cells using functionalized ionic liquid-dopants, Adv. Mater. 29 (36) (2017) 1702157.https://doi.org/10.1002/adma.201702157 [3] Y. Zhang, G. Grancini, Z.F. Fei, E. Shirzadi, X.H. Liu, E. Oveisi, F.F. Tirani, R. Scopelliti, Y.Q. Feng, M.K. Nazeeruddin, P.J. Dyson, Auto-passivation of crystal defects in hybrid imidazolium/methylammonium lead iodide films by fumigation with methylamine affords high efficiency perovskite solar cells, Nano Energy 58 (2019) 105-111.http://dx.doi.org/10.1016/j.nanoen.2019.01.027 [4] X.X. Gao, W. Luo, Y. Zhang, R.Y. Hu, B. Zhang, A. Züttel, Y.Q. Feng, M.K. Nazeeruddin, Stable and high-efficiency methylammonium-free perovskite solar cells, Adv. Mater. 32 (9) (2020) 1905502.https://doi.org/10.1002/adma.201905502 [5] M. Kim, J. Jeong, H.Z. Lu, T.K. Lee, F.T. Eickemeyer, Y.H. Liu, I.W. Choi, S.J. Choi, Y. Jo, H.B. Kim, S.I. Mo, Y.K. Kim, H. Lee, N.G. An, S. Cho, W.R. Tress, S.M. Zakeeruddin, A. Hagfeldt, J.Y. Kim, M. Grätzel, D.S. Kim, Conformal quantum dot-SnO 2 layers as electron transporters for efficient perovskite solar cells, Science 375 (6578) (2022) 302-306.https://doi.org/10.1126/science.abh1885 [6] Y. Zhang, G. Grancini, Y.Q. Feng, A.M. Asiri, M.K. Nazeeruddin, Optimization of stable quasi-cubic FAxMA1-xPbI3 perovskite structure for solar cells with efficiency beyond 20%, ACS Energy Lett. 2 (4) (2017) 802-806.https://doi.org/10.1021/acsenergylett.7b00112 [7] X.H. Liu, M. Chen, Y. Zhang, J.X. Xia, J.Z. Yin, M. Li, K.G. Brooks, R.Y. Hu, X.X. Gao, Y.H. Kim, A. Züttel, J.M. Luther, S. Kinge, Y.Q. Feng, M.K. Nazeeruddin, High-efficiency perovskite photovoltaic modules achieved via cesium doping, Chem. Eng. J. 431 (2022) 133713.http://dx.doi.org/10.1016/j.cej.2021.133713 [8] H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Grätzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep. 2 (2012) 591.https://pubmed.ncbi.nlm.nih.gov/22912919/ [9] M. Degani, Q.Z. An, M. Albaladejo-Siguan, Y.J. Hofstetter, C. Cho, F. Paulus, G. Grancini, Y. Vaynzof, 23.7% Efficient inverted perovskite solar cells by dual interfacial modification, Sci. Adv. 7 (49) (2021) eabj7930.https://pubmed.ncbi.nlm.nih.gov/34851671/ [10] A. Abate, T. Leijtens, S. Pathak, J. Teuscher, R. Avolio, M.E. Errico, J. Kirkpatrik, J.M. Ball, P. Docampo, I. McPherson, H.J. Snaith, Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells, Phys. Chem. Chem. Phys. 15 (7) (2013) 2572-2579.https://pubmed.ncbi.nlm.nih.gov/23310946/ [11] S. Wang, M. Sina, P. Parikh, T. Uekert, B. Shahbazian, A. Devaraj, Y.S. Meng, Role of 4-tert-butylpyridine as a hole transport layer morphological controller in perovskite solar cells, Nano Lett. 16 (9) (2016) 5594-5600.https://doi.org/10.1021/acs.nanolett.6b02158 [12] J.H. Noh, N.J. Jeon, Y.C. Choi, M.K. Nazeeruddin, M. Grätzel, S.I. Seok, Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material, J. Mater. Chem. A 1 (38) (2013) 11842.https://doi.org/10.1039/c3ta12681a [13] X.X. Yin, L. Guan, J.S. Yu, D.W. Zhao, C.L. Wang, N. Shrestha, Y.B. Han, Q.S. An, J. Zhou, B.J. Zhou, Y. Yu, C.R. Grice, R.A. Awni, F.J. Zhang, J.B. Wang, R.J. Ellingson, Y.F. Yan, W.H. Tang, One-step facile synthesis of a simple carbazole-cored hole transport material for high-performance perovskite solar cells, Nano Energy 40 (2017) 163-169.http://dx.doi.org/10.1016/j.nanoen.2017.08.016 [14] W.Q. Zhou, Z.H. Wen, P. Gao, Less is more:Dopant-free hole transporting materials for high-efficiency perovskite solar cells, Adv. Energy Mater. 8 (9) (2018) 1702512.https://doi.org/10.1002/aenm.201702512 [15] L.Z. Zhang, X.Y. Zhou, C. Liu, X.Z. Wang, B.M. Xu, A review on solution-processable dopant-free small molecules as hole-transporting materials for efficient perovskite solar cells, Small Methods 4 (9) (2020) 2000254.https://doi.org/10.1002/smtd.202000254 [16] X. Wu, B. Li, Z.L. Zhu, C.C. Chueh, A.K.Y. Jen, Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells, Chem. Soc. Rev. 50 (23) (2021) 13090-13128.https://doi.org/10.1039/d1cs00841b [17] M.M.H. Desoky, M. Bonomo, N. Barbero, G. Viscardi, C. Barolo, P. Quagliotto, Polymeric dopant-free hole transporting materials for perovskite solar cells:Structures and concepts towards better performances, Polymers 13 (10) (2021) 1652.https://doi.org/10.3390/polym13101652 [18] W.H. Wang, J. Zhou, W.H. Tang, Design of dopant-free small molecular hole transport materials for perovskite solar cells:A viewpoint from defect passivation, J. Mater. Chem. A 10 (3) (2022) 1150-1178.https://doi.org/10.1039/d1ta10388a [19] J.B. Zhang, B. Xu, M.B. Johansson, M. Hadadian, J.P. Correa Baena, P. Liu, Y. Hua, N. Vlachopoulos, E.M.J. Johansson, G. Boschloo, L.C. Sun, A. Hagfeldt, Constructive effects of alkyl chains:A strategy to design simple and non-spiro hole transporting materials for high-efficiency mixed-ion perovskite solar cells, Adv. Energy Mater. 6 (13) (2016) 1502536.https://doi.org/10.1002/aenm.201502536 [20] K.P. Guo, M. Wu, S.M. Yang, Z.T. Wang, J. Li, X.Z. Liang, F. Zhang, Z.K. Liu, Z.Q. Wang, Introduction of fluorine into spiro[fluorene-9, 9'-xanthene]-based hole transport material to obtain sensitive-dopant-free, high efficient and stable perovskite solar cells, Sol. RRL 3 (4) (2019) 1800352.https://doi.org/10.1002/solr.201800352 [21] L.Q. Wang, J.B. Zhang, P. Liu, B. Xu, B.B. Zhang, H. Chen, A.K. Inge, Y.Y. Li, H.X. Wang, Y.B. Cheng, L. Kloo, L.C. Sun, Design and synthesis of dopant-free organic hole-transport materials for perovskite solar cells, Chem. Commun. 54 (69) (2018) 9571-9574.https://doi.org/10.1039/c8cc04026e [22] H.D. Pham, T.T. Do, J. Kim, C. Charbonneau, S. Manzhos, K. Feron, W.C. Tsoi, J.R. Durrant, S.M. Jain, P. Sonar, Molecular engineering using an anthanthrone dye for low-cost hole transport materials:A strategy for dopant-free, high-efficiency, and stable perovskite solar cells, Adv. Energy Mater. 8 (16) (2018) 1703007.https://doi.org/10.1002/aenm.201703007 [23] X.L. Sun, F. Wu, C. Zhong, L.N. Zhu, Z.A. Li, A structure-property study of fluoranthene-cored hole-transporting materials enables 19.3% efficiency in dopant-free perovskite solar cells, Chem. Sci. 10 (28) (2019) 6899-6907.https://pubmed.ncbi.nlm.nih.gov/31402973/ [24] X.Y. Yu, Z. Li, X.L. Sun, C. Zhong, Z.L. Zhu, Z.A. Li, A.K.Y. Jen, Dopant-free dicyanofluoranthene-based hole transporting material with low cost enables efficient flexible perovskite solar cells, Nano Energy 82 (2021) 105701.http://dx.doi.org/10.1016/j.nanoen.2020.105701 [25] J.F. Qiu, H.L. Liu, X.G. Li, S.R. Wang, Position effect of arylamine branches on pyrene-based dopant-free hole transport materials for efficient and stable perovskite solar cells, Chem. Eng. J. 387 (2020) 123965.http://dx.doi.org/10.1016/j.cej.2019.123965 [26] B.X. Zhao, C. Yao, K.C. Gu, T.R. Liu, Y. Xia, Y.L. Loo, A hole-transport material that also passivates perovskite surface defects for solar cells with improved efficiency and stability, Energy Environ. Sci. 13 (11) (2020) 4334-4343.https://doi.org/10.1039/d0ee01655a [27] C.Y. Huang, W.F. Fu, C.Z. Li, Z.Q. Zhang, W.M. Qiu, M.M. Shi, P. Heremans, A.K.Y. Jen, H.Z. Chen, Dopant-free hole-transporting material with a C3h symmetrical truxene core for highly efficient perovskite solar cells, J. Am. Chem. Soc. 138 (8) (2016) 2528-2531.https://pubmed.ncbi.nlm.nih.gov/26876042/ [28] K. Yang, Q. Liao, J. Huang, Z. Zhang, M. Su, Z. Chen, Z. Wu, D. Wang, Z. Lai, H.Y. Woo, Y. Cao, P. Gao, X. Guo, Intramolecular noncovalent interaction-enabled dopant-free hole-transporting materials for high-performance inverted perovskite solar cells, Angew. Chem. Int. Ed Engl. 61 (2) (2022) e202113749.https://pubmed.ncbi.nlm.nih.gov/34783150/ [29] F. Meng, Y.H. Wang, Y.P. Wen, X. Lai, W.H. Li, A.K.K. Kyaw, R. Zhang, D.Y. Fan, Y.H. Li, M.Z. Du, X. Guo, H.B. Ma, G.Q. Li, X.W. Sun, J.P. Wang, Dopant-free and green-solvent-processable hole-transporting materials for highly efficient inverted planar perovskite solar cells, Sol. RRL 4 (10) (2020) 2070105.https://doi.org/10.1002/solr.202070105 [30] C. Shen, Y.Z. Wu, H. Zhang, E.P. Li, W.W. Zhang, X.J. Xu, W.J. Wu, H. Tian, W.H. Zhu, Semi-locked tetrathienylethene as a building block for hole-transporting materials:Toward efficient and stable perovskite solar cells, Angew. Chem. Int. Ed. 58 (12) (2019) 3784-3789.https://doi.org/10.1002/anie.201811593 [31] R.M. Xue, M.Y. Zhang, D.Y. Luo, W.J. Chen, R. Zhu, Y.M. Yang, Y.W. Li, Y.F. Li, Dopant-free hole transporting materials with supramolecular interactions and reverse diffusion for efficient and modular p-i-n perovskite solar cells, Sci. China Chem. 63 (7) (2020) 987-996.http://dx.doi.org/10.1007/s11426-020-9741-1 [32] Z.F. Li, Y.H. Tong, J.K. Ren, Q.J. Sun, Y. Tian, Y.X. Cui, H. Wang, Y.Y. Hao, C.S. Lee, Fluorinated triphenylamine-based dopant-free hole-transporting material for high-performance inverted perovskite solar cells, Chem. Eng. J. 402 (2020) 125923.http://dx.doi.org/10.1016/j.cej.2020.125923 [33] J. Zhang, Q. Sun, Q.Y. Chen, Y.K. Wang, Y. Zhou, B. Song, X.G. Jia, Y.Y. Zhu, S. Zhang, N.Y. Yuan, J.N. Ding, Y.F. Li, Dibenzo[b, d]thiophene-cored hole-transport material with passivation effect enabling the high-efficiency planar p-i-n perovskite solar cells with 83% fill factor, Sol. RRL 4 (3) (2020) 1900421.https://doi.org/10.1002/solr.201900421 [34] K.M. Lee, W.H. Chiu, Y.H. Tsai, C.S. Wang, Y.T. Tao, Y.D. Lin, High-performance perovskite solar cells based on dopant-free hole-transporting material fabricated by a thermal-assisted blade-coating method with efficiency exceeding 21%, Chem. Eng. J. 427 (2022) 131609.http://dx.doi.org/10.1016/j.cej.2021.131609 [35] Z.T. Chang, J.H. Guo, Q. Fu, T. Wang, R. Wang, Y.S. Liu, Central-core engineering of dopant-free hole transport materials for efficient n-i-p structured perovskite solar cells, Sol. RRL (2021) 2100184.https://doi.org/10.1002/solr.202100184 [36] J.F. Hai, H. Wu, X.X. Yin, J.X. Song, L. Hu, Y.Z. Jin, L. Li, Z. Su, Z.G. Xu, H. Wang, Z.F. Li, Dopant-free hole transport materials based on a large conjugated electron-deficient core for efficient perovskite solar cells, Adv. Funct. Mater. 31 (51) (2021) 2105458.https://doi.org/10.1002/adfm.202105458 [37] P. Xu, P. Liu, Y.Y. Li, B. Xu, L. Kloo, L.C. Sun, Y. Hua, D-A-D-typed hole transport materials for efficient perovskite solar cells:Tuning photovoltaic properties via the acceptor group, ACS Appl. Mater. Interfaces 10 (23) (2018) 19697-19703.https://doi.org/10.1021/acsami.8b04003 [38] H.X. Guo, H. Zhang, C. Shen, D.W. Zhang, S.J. Liu, Y.Z. Wu, W.H. Zhu, A coplanar π-extended quinoxaline based hole-transporting material enabling over 21% efficiency for dopant-free perovskite solar cells, Angew. Chem. Int. Ed. 60 (5) (2021) 2674-2679.https://doi.org/10.1002/anie.202013128 [39] Y.F. Geng, A.L. Tang, K. Tajima, Q.D. Zeng, E.J. Zhou, Conjugated materials containing dithieno[3, 2-b:2', 3'-d]pyrrole and its derivatives for organic and hybrid solar cell applications, J. Mater. Chem. A 7 (1) (2019) 64-96.https://doi.org/10.1039/c8ta09383k [40] J. Zhou, X.X. Yin, Z.H. Dong, A. Ali, Z.N. Song, N. Shrestha, S.S. Bista, Q.Y. Bao, R.J. Ellingson, Y.F. Yan, W.H. Tang, Dithieno[3, 2-b:2', 3'-d]pyrrole cored p-type semiconductors enabling 20% efficiency dopant-free perovskite solar cells, Angew. Chem. Int. Ed. 58 (39) (2019) 13717-13721.https://doi.org/10.1002/anie.201905624 [41] X.X. Yin, J. Zhou, Z.N. Song, Z.H. Dong, Q.Y. Bao, N. Shrestha, S.S. Bista, R.J. Ellingson, Y.F. Yan, W.H. Tang, Dithieno[3, 2-b:2', 3'-d]pyrrol-cored hole transport material enabling over 21% efficiency dopant-free perovskite solar cells, Adv. Funct. Mater. 29 (38) (2019) 1904300.https://doi.org/10.1002/adfm.201904300 [42] Y. Wang, W. Chen, L. Wang, B. Tu, T. Chen, B. Liu, K. Yang, C.W. Koh, X.H. Zhang, H.L. Sun, G.C. Chen, X.Y. Feng, H.Y. Woo, A.B. Djurišić, Z.B. He, X.G. Guo, Dopant-free small-molecule hole-transporting material for inverted perovskite solar cells with efficiency exceeding 21%, Adv. Mater. 31 (35) (2019) 1902781.https://doi.org/10.1002/adma.201902781 [43] J. Zhang, Q. Sun, Q.Y. Chen, Y.K. Wang, Y. Zhou, B. Song, N.Y. Yuan, J.N. Ding, Y.F. Li, High efficiency planar p-i-n perovskite solar cells using low-cost fluorene-based hole transporting material, Adv. Funct. Mater. 29 (22) (2019) 1900484.https://doi.org/10.1002/adfm.201900484 [44] Y. Zhang, C. Kou, J.J. Zhang, Y.H. Liu, W.H. Li, Z.S. Bo, M. Shao, Crosslinked and dopant free hole transport materials for efficient and stable planar perovskite solar cells, J. Mater. Chem. A 7 (10) (2019) 5522-5529.https://doi.org/10.1039/c8ta12060a [45] T.Q. Niu, W.Y. Zhu, Y.H. Zhang, Q.F. Xue, X.C. Jiao, Z.J. Wang, Y.M. Xie, P. Li, R.F. Chen, F. Huang, Y. Li, H.L. Yip, Y. Cao, D-A-π-A-D-type dopant-free hole transport material for low-cost, efficient, and stable perovskite solar cells, Joule 5 (1) (2021) 249-269.http://dx.doi.org/10.1016/j.joule.2020.12.003 [46] Y. Cao, Y.L. Li, T. Morrissey, B. Lam, B.O. Patrick, D.J. Dvorak, Z.C. Xia, T.L. Kelly, C.P. Berlinguette, Dopant-free molecular hole transport material that mediates a 20% power conversion efficiency in a perovskite solar cell, Energy Environ. Sci. 12 (12) (2019) 3502-3507.https://doi.org/10.1039/c9ee02983d [47] J. Wang, X. Wu, Y.Z. Liu, T. Qin, K.C. Zhang, N. Li, J. Zhao, R.Q. Ye, Z.X. Fan, Z.G. Chi, Z.L. Zhu, Dopant-free hole-transporting material with enhanced intermolecular interaction for efficient and stable n-i-p perovskite solar cells, Adv. Energy Mater. 11 (29) (2021) 2100967.https://doi.org/10.1002/aenm.202100967 [48] C.R. Yin, J.F. Lu, Y.C. Xu, Y.K. Yun, K. Wang, J.W. Li, L.C. Jiang, J.S. Sun, A.D. Scully, F.Z. Huang, J. Zhong, J.P. Wang, Y.B. Cheng, T.S. Qin, W. Huang, Low-cost N, N'-bicarbazole-based dopant-free hole-transporting materials for large-area perovskite solar cells, Adv. Energy Mater. 8 (21) (2018) 1800538.https://doi.org/10.1002/aenm.201800538 [49] B. Cai, X.C. Yang, X.Q. Jiang, Z. Yu, A. Hagfeldt, L.C. Sun, Boosting the power conversion efficiency of perovskite solar cells to 17.7% with an indolo[3, 2-b]carbazole dopant-free hole transporting material by improving its spatial configuration, J. Mater. Chem. A 7 (24) (2019) 14835-14841.https://doi.org/10.1039/c9ta04166d [50] C. Yang, H. Wang, Y. Miao, C. Chen, M. Zhai, Q. Bao, X. Ding, X. Yang, M. Cheng, Interfacial molecular doping and energy level alignment regulation for perovskite solar cells with efficiency exceeding 23%, ACS Energy Lett. (2021) 2690-2696 [51] K. Su, P. Zhao, Y. Ren, Y. Zhang, G. Yang, Y.Q. Huang, Y.Q. Feng, B. Zhang, A porphyrin-involved benzene-1, 3, 5-tricarboxamide dendrimer (por-BTA) as a multifunctional interface material for efficient and stable perovskite solar cells, ACS Appl. Mater. Interfaces 13 (12) (2021) 14248-14257.https://doi.org/10.1021/acsami.1c00146 [52] K. Su, W.T. Chen, Y.Q. Huang, G. Yang, K.G. Brooks, B. Zhang, Y.Q. Feng, M.K. Nazeeruddin, Y. Zhang, In situ graded passivation via porphyrin derivative with enhanced photovoltage and fill factor in perovskite solar cells, Sol. RRL 6 (4) (2022) 2100964.https://doi.org/10.1002/solr.202100964 [53] Y.M. Feng, Q.K. Hu, E. Rezaee, M.Z. Li, Z.X. Xu, A. Lorenzoni, F. Mercuri, M. Muccini, High-performance and stable perovskite solar cells based on dopant-free arylamine-substituted copper(II) phthalocyanine hole-transporting materials, Adv. Energy Mater. (2019) 1901019.https://doi.org/10.1002/aenm.201901019 [54] S. Chen, P. Liu, Y. Hua, Y.Y. Li, L. Kloo, X.Z. Wang, B. Ong, W.K. Wong, X.J. Zhu, Study of arylamine-substituted porphyrins as hole-transporting materials in high-performance perovskite solar cells, ACS Appl. Mater. Interfaces 9 (15) (2017) 13231-13239.https://doi.org/10.1021/acsami.7b01904 [55] J. Cao, X.D. Lv, P. Zhang, T.T. Chuong, B.H. Wu, X.X. Feng, C.F. Shan, J.C. Liu, Y. Tang, Plant sunscreen and co(II)/(III) porphyrins for UV-resistant and thermally stable perovskite solar cells:From natural to artificial, Adv. Mater. 30 (27) (2018) e1800568.https://pubmed.ncbi.nlm.nih.gov/29774604/ [56] X.C. Wang, J. Zhang, S.W. Yu, W. Yu, P. Fu, X. Liu, D.D. Tu, X. Guo, C. Li, Lowering molecular symmetry to improve the morphological properties of the hole-transport layer for stable perovskite solar cells, Angew. Chem. Int. Ed. 57 (38) (2018) 12529-12533.https://doi.org/10.1002/anie.201807402 [57] X.X. Yin, Z.N. Song, Z.F. Li, W.H. Tang, Toward ideal hole transport materials:A review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells, Energy Environ. Sci. 13 (11) (2020) 4057-4086.https://doi.org/10.1039/d0ee02337j [58] J.Z. Chen, N.G. Park, Materials and methods for interface engineering toward stable and efficient perovskite solar cells, ACS Energy Lett. 5 (8) (2020) 2742-2786.https://doi.org/10.1021/acsenergylett.0c01240 [59] R.A. Kerner, S. Heo, K. Roh, K. MacMillan, B.W. Larson, B.P. Rand, Organic hole transport material ionization potential dictates diffusion kinetics of iodine species in halide perovskite devices, ACS Energy Lett. 6 (2) (2021) 501-508.https://doi.org/10.1021/acsenergylett.0c02495 [60] E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin, T.Y. Yang, J.H. Noh, J. Seo, Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene), Nature 567 (7749) (2019) 511-515.https://doi.org/10.1038/s41586-019-1036-3 [61] X.L. Sun, Z. Li, X.Y. Yu, X. Wu, C. Zhong, D.J. Liu, D.Y. Lei, A.K.Y. Jen, Z.A. Li, Z.L. Zhu, Efficient inverted perovskite solar cells with low voltage loss achieved by a pyridine-based dopant-free polymer semiconductor, Angew. Chem. Int. Ed. 60 (13) (2021) 7227-7233.https://doi.org/10.1002/anie.202016085 [62] Y. Wang, Q.G. Liao, J.H. Chen, W. Huang, X.M. Zhuang, Y.M. Tang, B.L. Li, X.Y. Yao, X.Y. Feng, X.H. Zhang, M.Y. Su, Z.B. He, T.J. Marks, A. Facchetti, X.G. Guo, Teaching an old anchoring group new tricks:Enabling low-cost, eco-friendly hole-transporting materials for efficient and stable perovskite solar cells, J. Am. Chem. Soc. 142 (39) (2020) 16632-16643.https://doi.org/10.1021/jacs.0c06373 [63] K. Jiang, J. Wang, F. Wu, Q.F. Xue, Q. Yao, J.Q. Zhang, Y.H. Chen, G.Y. Zhang, Z.L. Zhu, H. Yan, L.N. Zhu, H.L. Yip, Dopant-free organic hole-transporting material for efficient and stable inverted all-inorganic and hybrid perovskite solar cells, Adv. Mater. 32 (16) (2020) 1908011.https://doi.org/10.1002/adma.201908011 |
[1] | Minjie Shi, Nianting Chen, Yue Zhao, Cheng Yang, Chao Yan. Facile wet-chemical fabrication of bi-functional coordination polymer nanosheets for high-performance energy storage and anti-corrosion engineering [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 118-127. |
[2] | Xinyu Yang, Zezhi Chen, Huijuan Gong. Coking of Pt/γ-Al2O3 catalyst in landfill gas deoxygen and its effects on catalytic performance [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 224-232. |
[3] | N. M'hanni, T. Anik, R. Touir, M. Galai, M. Ebn Touhami, E.H. Rifi, Z. Asfari, S. Bakkali. Effect of additives on nickel-phosphorus deposition obtained by electroless plating: Characterization and corrosion resistance in 3%(mass) sodium chloride medium [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 341-350. |
[4] | Mingxia Tian, Aili Wang, Hengbo Yin. Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 284-291. |
[5] | Ying Zhou, Ruiying Li, Zexuan Lv, Jian Liu, Hongjun Zhou, Chunming Xu. Green hydrogen: A promising way to the carbon-free society [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 2-13. |
[6] | Jingying Xu, Yue Lyu, Jiankun Zhuo, Yishu Xu, Zijian Zhou, Qiang Yao. Formation and emission characteristics of VOCs from a coal-fired power plant [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 256-264. |
[7] | Shanshan Wang, Liangliang Huang, Yumeng Zhang, Licheng Li, Xiaohua Lu. A mini-review on the modeling of volatile organic compound adsorption in activated carbons: Equilibrium, dynamics, and heat effects [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 153-163. |
[8] | Li Yang, Yong Jiao, Dongyan Jia, Yanzhi Li, Chuanhua Liao. Role of oxygen vacancies and Sr sites in SrCo0.8Fe0.2O3 perovskite on efficient activation of peroxymonosulfate towards the degradation of aqueous organic pollutants [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 269-277. |
[9] | Subbaiyan Naveen, Kannappan Panchamoorthy Gopinath, Rajagopal Malolan, Ramesh Sai Jayaraman, Krishnan Aakriti, Jayaseelan Arun. A solar reactor for bio-diesel production from Pongamia oil: Studies on transesterfication process parameters and energy efficiency [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 218-224. |
[10] | Feng Guo, Xiliu Huang, Zhihao Chen, Haoran Sun, Lizhuang Chen. Anchoring CoP nanoparticles on the octahedral CoO by self-phosphating for enhanced photocatalytic overall water splitting activity under visible light [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 114-123. |
[11] | Bing Zhou, Bin Sun, Wenjuan Qiu, Ying Zhou, Junqian He, Xiao'ai Lu, Hanfeng Lu. Adsorption/desorption of toluene on a hypercrosslinked polymeric resin in a highly humid gas stream [J]. Chinese Journal of Chemical Engineering, 2019, 27(4): 863-868. |
[12] | Xiaobin Ma, Minyan Wu, Shuo Liu, Jinxing Huang, Bin Sun, Ying Zhou, Qiulian Zhu, Hanfeng Lu. Concentration control of volatile organic compounds by ionic liquid absorption and desorption [J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2383-2389. |
[13] | Moses Arowo, Zemeng Zhao, Guangjun Li, Guangwen Chu, Baochang Sun, Lei Shao. Ozonation of o-phenylenediamine in the presence of hydrogen peroxide by high-gravity technology [J]. Chin.J.Chem.Eng., 2018, 26(3): 601-607. |
[14] | Wenjuan Qiu, Kang Dou, Ying Zhou, Haifeng Huang, Yinfei Chen, Hanfeng Lu. Hierarchical pore structure of activated carbon fabricated by CO2/microwave for volatile organic compounds adsorption [J]. Chin.J.Chem.Eng., 2018, 26(1): 81-88. |
[15] | Yiyang Kong, Binjie Hu, Yanqing Guo, Yifan Wu. Effect of ionic liquids on stability of O/W miniemulsion for application of low emission coating products [J]. Chin.J.Chem.Eng., 2016, 24(1): 196-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||