[1] K.L. Li, S. Chen, M.B. Li, L.L. Liu, Y.J. Li, G.B. Yang, H. Guo, E.T. Xu, F. Wang, Plasma catalytic ammonia synthesis in a fluidized-bed DBD reactor over M/Al(2)O(3): Enhancement of plasma-catalyst surface interaction, J. Colloid Interface Sci. 683 (Pt 1) (2025) 652-662. [2] K. Lu, Y.H. Xu, H. Yuan, J.P. Liang, H.L. Wang, J. Zhang, Y.N. Li, D.Z. Yang, Non-thermal plasma synergistic Ni/Al2O3 for ammonia synthesis: Configuration and optimization of a double dielectric barrier discharge reactor, Int. J. Hydrog. Energy 97 (2025) 835-844. [3] H.D. Cai, L.L. Zhang, J.S. Xu, J.H. Huang, X.L. Wei, L. Wang, Z.Y. Song, W. Long, Cobalt-free La0.5Sr0.5Fe0.9Mo0.1O3-δ electrode for symmetrical SOFC running on H2 and CO fuels, Electrochim. Acta 320 (2019) 134642. [4] L.M. Zhou, K.J. Wu, D.T. Li, Q. Hu, H.F. Lu, B. Liang, Hydrogen production at a low voltage of 0.46 V @ 0.4 A/Cm2 at 850 °C in SOECs enhanced by anode oxidation of methane, Ind. Eng. Chem. Res. 63 (47) (2024) 20497-20509. [5] B.B. He, L. Zhao, S.X. Song, T. Liu, F.L. Chen, C.R. Xia, Sr2Fe1.5Mo0.5O6-δ-Sm0.2Ce0.8O1.9 Composite anodes for intermediate-temperature solid oxide fuel cells, J. Electrochem. Soc. 159 (5) (2012) B619-B626. [6] P. Qiu, S.C. Sun, J. Li, L.C. Jia, A review on the application of Sr2Fe1.5Mo0.5O6-based oxides in solid oxide electrochemical cells, Sep. Purif. Technol. 298 (2022) 121581. [7] J. Lu, Y.B. Hu, M.M. Zhang, Q. Hu, J. Wu, Optimization of Pt infiltrated Sr2Fe2-xMoxO6-δ-Ce0.8Sm0.2O1.9 oxygen electrode for reversible solid oxide cell and CH4-assisted electrolysis process, Int. J. Hydrog. Energy 55 (2024) 786-795. [8] D. Ding, X.X. Li, S.Y. Lai, K. Gerdes, M.L. Liu, Enhancing SOFC cathode performance by surface modification through infiltration, Energy Environ. Sci. 7 (2) (2014) 552-575. [9] P.A. Connor, X.L. Yue, C.D. Savaniu, R. Price, G. Triantafyllou, M. Cassidy, G. Kerherve, D.J. Payne, R.C. Maher, L.F. Cohen, R.I. Tomov, B.A. Glowacki, R.V. Kumar, J.T.S. Irvine, Tailoring SOFC electrode microstructures for improved performance, Adv. Energy Mater. 8 (23) (2018) 1800120. [10] T.H. Zhang, Y.Q. Zhao, X.Y. Zhang, H. Zhang, N. Yu, T. Liu, Y. Wang, Thermal stability of an in situ exsolved metallic nanoparticle structured perovskite type hydrogen electrode for solid oxide cells, ACS Sustainable Chem. Eng. 7 (21) (2019) 17834-17844. [11] J.H. Lu, C.L. Zhu, C.C. Pan, W.L. Lin, J.P. Lemmon, F.L. Chen, C.S. Li, K. Xie, Highly efficient electrochemical reforming of CH(4)/CO(2) in a solid oxide electrolyser, Sci. Adv. 4 (3) (2018) eaar5100. [12] C.L. Dong, F.K. Jiang, L. Yang, C.L. Wang, K. Xie, Enhancing electrocatalytic reforming of CO2/CH4 with in situ exsolved metal-oxide interfaces in a solid oxide electrolysis cell, Sep. Purif. Technol. 299 (2022) 121714. [13] Y. Patcharavorachot, S. Thongdee, D. Saebea, S. Authayanun, A. Arpornwichanop, Performance comparison of solid oxide steam electrolysis cells with/without the addition of methane, Energy Convers. Manag. 120 (2016) 274-286. [14] B.D. Mukri, U.V. Waghmare, M.S. Hegde, Platinum ion-doped TiO2: high catalytic activity of Pt2+ with oxide ion vacancy in Ti4+1-xPt2+xO2-x compared to Pt4+ without oxide ion vacancy in Ti4+1-xPt4+xO2, Chem. Mater. 25 (19) (2013) 3822-3833. [15] A. Gili, M.F. Bekheet, F. Thimm, B. Bischoff, M. Geske, M. Konrad, S. Praetz, C. Schlesiger, S. Selve, A. Gurlo, F. Rosowski, R. Schomacker, One-pot synthesis of iron-doped ceria catalysts for tandem carbon dioxide hydrogenation, Catal. Sci. Technol. 14 (15) (2024) 4174-4186. [16] J.H. Chen, H. Arandiyan, X. Gao, J.H. Li, Recent advances in catalysts for methane combustion, Catal. Surv. Asia 19 (3) (2015) 140-171. [17] W.F. Li, M.J. Xiao, J.T. Jiang, Y.Q. Li, X. Zhang, S.M. Li, X.M. Lin, D.L. Peng, S.W. Or, S.H. Sun, Z.Y. Xing, Co4N nanoparticles embedded in N-doped carbon pores: Advanced interlayer material for lithium-sulfur batteries, Nano Energy 142 (2025) 111140. [18] Holzwarth, U, & Gibson, N, The scherrer equation versus the ‘Debye-scherrer equation’, Nat. Nanotechnol. 6 (2011) 534. [19] L. Cheng, C.H. Ma, W.Q. Lu, X. Wang, H.J. Yue, D. Zhang, Z.Y. Xing, A graphitized hierarchical porous carbon as an advanced cathode host for alkali metal-selenium batteries, Chem. Eng. J. 433 (2022) 133527. [20] X.A. Xi, X.W. Wang, Y. Fan, Q. Wang, Y. Lu, J. Li, L. Shao, J.L. Luo, X.Z. Fu, Efficient bifunctional electrocatalysts for solid oxide cells based on the structural evolution of perovskites with abundant defects and exsolved CoFe nanoparticles, J. Power Sources 482 (2021) 228981. [21] W.C. Cui, M.J. Ma, J.X. Sun, R.Z. Ren, C.M. Xu, J.S. Qiao, W. Sun, K.N. Sun, Z.H. Wang, Sr2Fe1.5Mo0.4Ti0.1O6-δ perovskite anode for high-efficiency coal utilization in direct carbon solid oxide fuel cells, J. Power Sources 557 (2023) 232562. [22] J. Xie, S. Wang, F.G. Wang, Photo-induced thermal effect on Pt/CeO2 surface for promoting formaldehyde oxidation performance by photothermal catalysis, Appl. Surf. Sci. 644 (2024) 158709. [23] Y.L. Lee, A. Mnoyan, H.S. Na, S.Y. Ahn, K.J. Kim, J.O. Shim, K. Lee, H.S. Roh, Comparison of the effects of the catalyst preparation method and CeO2 morphology on the catalytic activity of Pt/CeO2 catalysts for the water-gas shift reaction, Catal. Sci. Technol. 10 (18) (2020) 6299-6308. [24] Y.M. Ma, L.J. Zhang, K. Zhu, B.Z. Zhang, R.R. Peng, C.R. Xia, L. Huang, In3+-doped Sr2Fe1.5Mo0.5O6-δ cathode with improved performance for an intermediate-temperature solid oxide fuel cell, Nano Res. 17 (1) (2024) 407-415. [25] H.G. Jiang, Z.M. Lu, B. Qian, S. Wang, B. Yin, Y.F. Zheng, L. Ge, H. Chen, C.Z. Zhang, Bi-doped La1.5Sr0.5Ni0.5Mn0.5O4+δ as an efficient air electrode material for SOEC, Int. J. Hydrog. Energy 46 (73) (2021) 36037-36045. [26] T. Liu, H. Liu, X.Y. Zhang, L.B. Lei, Y.X. Zhang, Z.H. Yuan, F.L. Chen, Y. Wang, A robust solid oxide electrolyzer for highly efficient electrochemical reforming of methane and steam, J. Mater. Chem. A 7 (22) (2019) 13550-13558. [27] A. Hauch, A. Hagen, J. Hjelm, T. Ramos, Sulfur poisoning of SOFC anodes: effect of overpotential on long-term degradation, J. Electrochem. Soc. 161 (6) (2014) F734-F743. |