[1] J.X. Liu, S. Yang, Q.C. Li, L.M. Ji, X.F. Hou, L.D. Hou, J. Ma, Machine learning for forecasting factory concentrations of nitrogen oxides from univariate data exploiting trend attributes, Int. J. Adv. Nucl. React. Des. Technol. 6 (2) (2024) 117-122. [2] J.X. Liu, Y. Tian, S. Yang, Y.Q. Qin, X.F. Hou, Y.T. Hu, L.D. Hou, J. Ma, Analysis of explosion incidents in nuclear fuel reprocessing facilities and recommendations for their prevention, Int. J. Adv. Nucl. React. Des. Technol. 6 (2) (2024) 108-116. [3] H.Y. Jeong, Y.I. Kim, Y.B. Lee, K.S. Ha, B.C. Won, D.U. Lee, D. Hahn, A ‘must-go path’ scenario for sustainable development and the role of nuclear energy in the 21st century, Energy Policy 38 (4) (2010) 1962-1968. [4] M.M. Wu, J.H. Yan, T.T. ji, K.P. Yu, Y.W. Sun, Y. Liu, X.G. Bai, Y.H. Liu, J.X. Liu, J. Ma, Y. Liu, Synthesis of (222)-oriented defect-rich MOF-808 membranes towards high-efficiency uranium rejection, J. Membr. Sci. 717 (2025) 123570. [5] T. Mai, P. Denholm, P. Brown, W. Cole, E. Hale, P. Lamers, C. Murphy, M. Ruth, B. Sergi, D. Steinberg, S.F. Baldwin, Getting to 100%: six strategies for the challenging last 10%, Joule 6 (9) (2022) 1981-1994. [6] R. Busquim e Silva, M.S. Kazimi, P. Hejzlar, Nuclear fuel recycling: National and regional options for the US nuclear energy system, Energy Environ. Sci. 3 (8) (2010) 996. [7] A.A. Adam, M.A.H. Eltayeb, O.B. Ibrahim, Uranium recovery from Uro area phosphate ore, Nuba Mountains, Sudan, Arab. J. Chem. 7 (5) (2014) 758-769. [8] P. Goel, N. Choudhury, S.L. Chaplot, Atomistic modeling of the vibrational and thermodynamic properties of uranium dioxide, UO2, J. Nucl. Mater. 377 (3) (2008) 438-443. [9] S. Manna, S.K. Satpati, S.B. Roy, Development of a pneumatic transport system for bulk transfer of metal grade uranium oxide powder, Trans. Indian Ceram. Soc. 69 (2) (2010) 103-108. [10] B. Dussoubs, J. Jourde, F. Patisson, J.L. Houzelot, D. Ablitzer, Mathematical modelling of uranium dioxide conversion in a moving bed furnace, Powder Technol. 128 (2-3) (2002) 168-177. [11] M.H. Khani, H. Pahlavanzadeh, M. Ghannadi, Kinetics study of the fluorination of uranium tetrafluoride in a fluidized bed reactor, Ann. Nucl. Energy 35 (4) (2008) 704-707. [12] T. Kai, Theoretical research on gas-centrifugal separation for uranium enrichment, J. Nucl. Sci. Technol. 26 (1) (1989) 157-160. [13] R. Gupta, J. Gamare, S.K. Gupta, S.S. Kumar, Direct dissolution of uranium oxides in deep eutectic solvent: an insight using electrochemical and luminescence study, J. Mol. Struct. 1215 (2020) 128266. [14] Y.C. Liu, Y.L. Liu, L. Wang, S.L. Jiang, Y.K. Zhong, Y.Z. Wu, M. Li, W.Q. Shi, Chemical species transformation during the dissolution process of U3O8 and UO3 in the LiCl-KCl-AlCl3 molten salt, Inorg. Chem. 61 (17) (2022) 6519-6529. [15] J. Zhang, L.H. Zhou, Z.M. Jia, X.F. Li, Y. Qi, C.T. Yang, X.H. Guo, S.Y. Chen, H.H. Long, L.J. Ma, Construction of covalent organic framework with unique double-ring pore for size-matching adsorption of uranium, Nanoscale 12 (47) (2020) 24044-24053. [16] V. Gonzalez, A.R. Otero, Formation of UO3 particles in a fluidized bed, Powder Technol. 7 (3) (1973) 137-143. [17] W.H. Hedley, R.J. Roehrs, W.T. Trask Jr, Production of uranium dioxide by flame denitration, Ind. Eng. Chem. Proc. Des. Dev. 3 (1) (1964) 11-14. [18] D.J. Loaiza, W. Stratton, Criticality data for spherical 235U, 239Pu, and 237Np systems reflector-moderated by low capturing-moderator materials, nucl technol 146 (2) (2004) 143-154. [19] A. dos Santos, R. Fuga, R. Jerez, A.Y. Abe, E.A. Filho, A proposal for Benchmarking235U nuclear data, Nucl. Sci. Eng. 137 (1) (2001) 52-69. [20] M.S. Dias, J.R.L. de Mattos, E.P. de Andrade, Very high burnup fuel for Angra 2 NPP within the 5 w/o limit of the 235U-enrichment, Nucl. Eng. Des. 346 (2019) 17-23. [21] W.H. Smith, Thermal dehydration of uranyl nitrate hydrates, J. Inorg. Nucl. Chem. 30 (7) (1968) 1761-1768. [22] E.J. Oerter, M. Singleton, Z.R. Dai, A. Deinhart, M. Thaw, M.L. Davisson, Hydrogen and oxygen stable isotope composition of water in metaschoepite mineralization on U3O8, Appl. Geochem. 112 (2020) 104469. [23] K.C. Shrivastava, G.P. Shelke, Nitrogen content determinations in different stages of thermal treatment involved in conversion of ammonium diuranate to uranium metal, J. Radioanal. Nucl. Chem. 314 (1) (2017) 105-110. [24] R. Eloirdi, D.H.M. Lin, K. Mayer, R. Caciuffo, T. Fanghanel, Investigation of ammonium diuranate calcination with high-temperature X-ray diffraction, J. Mater. Sci. 49 (24) (2014) 8436-8443. [25] N.L. Hansson, P.L. Tam, C. Ekberg, K. Spahiu, XPS study of external α-radiolytic oxidation of UO2 in the presence of argon or hydrogen, J. Nucl. Mater. 543 (2021) 152604. [26] K.O. Kvashnina, S.M. Butorin, P. Martin, P. Glatzel, Chemical state of complex uranium oxides, Phys. Rev. Lett. 111 (25) (2013) 253002. [27] G. Leinders, R. Bes, J. Pakarinen, K. Kvashnina, M. Verwerft, Evolution of the uranium chemical state in mixed-valence oxides, Inorg. Chem. 56 (12) (2017) 6784-6787. [28] M.R. Klosterman, E.J. Oerter, A.L. Deinhart, S. Chakraborty, M.J. Singleton, L.W. McDonald 4th, Oxygen kinetic isotope effects in the thermal decomposition and reduction of ammonium diuranate, ACS Omega 6 (45) (2021) 30856-30864. [29] N. Kumar, Y.R. Bamankar, K.T. Pillai, S.K. Mukerjee, V.N. Vaidya, V. Venugopal, Effect of feed solution composition and heat treatment conditions on the morphology of uranium oxide microspheres prepared by Sol-gel process, J. Nucl. Mater. 359 (1-2) (2006) 80-92. [30] Y.Y. Dong, W.P. Liao, Z.H. Suo, Uranium oxide-supported gold catalyst for water-gas shift reaction, Fuel Process. Technol. 137 (2015) 164-169. |