[1] Y.R. Li, J.Q. Xu, F. Lan, Y. Wang, H.R. Jiang, P. Zhu, X.K. Wu, Y. Huang, R. Li, Q.Y. Jiang, Y.L. Zhao, R.N. Liu, L.G. Zhang, R.F. Zhang, Atomic-level tin regulation for high-performance zinc-air batteries, J. Am. Chem. Soc. 147 (6) (2025) 4833-4843. [2] T.R. Zhang, J.J. Bian, Y.Q. Zhu, C.W. Sun, FeCo nanoparticles encapsulated in N-doped carbon nanotubes coupled with layered double (co, Fe) hydroxide as an efficient bifunctional catalyst for rechargeable zinc-air batteries, Small 17 (44) (2021) 2103737. [3] J. Balamurugan, P.M. Austeria, J.B. Kim, E.S. Jeong, H.H. Huang, D.H. Kim, N. Koratkar, S.O. Kim, Electrocatalysts for zinc-air batteries featuring single molybdenum atoms in a nitrogen-doped carbon framework, Adv. Mater. 35 (35) (2023) e2302625. [4] H. Liu, Z. Zhang, J.J. Fang, M.X. Li, M.G. Sendeku, X. Wang, H.Y. Wu, Y.P. Li, J.J. Ge, Z.B. Zhuang, D.J. Zhou, Y. Kuang, X.M. Sun, Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media, Joule 7 (3) (2023) 558-573. [5] X. Luo, H.Y. Zhao, X. Tan, S. Lin, K.S. Yu, X.Q. Mu, Z.H. Tao, P.X. Ji, S.C. Mu, Fe-S dually modulated adsorbate evolution and lattice oxygen compatible mechanism for water oxidation, Nat. Commun. 15 (1) (2024) 8293. [6] H.Y. Gong, G.L. Sun, W.H. Shi, D.W. Li, X.J. Zheng, H. Shi, X. Liang, R.Z. Yang, C.Z. Yuan, Nano-Au-decorated hierarchical porous cobalt sulfide derived from ZIF-67 toward optimized oxygen evolution catalysis: Important roles of microstructures and electronic modulation, Carbon Energy 6 (5) (2024) e432. [7] J.L. Wei, J.Y. Wang, W. Zhang, Y.Z. Mao, C.W. Sun, In situ construction of perovskite Pr0.5Ba0.5Mn0.8Co0.1Ru0.1O2.5+δ/CoRu nanoparticles with co-N-C composite enabling efficient bifunctional electrocatalyst for zinc-air batteries, Chem. Eur. J. 31 (1) (2025) e202403445. [8] Y.J. Chen, S.F. Ji, S. Zhao, W.X. Chen, J.C. Dong, W.C. Cheong, R.A. Shen, X.D. Wen, L.R. Zheng, A.I. Rykov, S.C. Cai, H.L. Tang, Z.B. Zhuang, C. Chen, Q. Peng, D.S. Wang, Y.D. Li, Author Correction: Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell, Nat. Commun. 13 (2022) 921. [9] X.J. Zheng, H.Y. Gong, N. Zhang, W.H. Shi, Q. Sun, Y.H. Qian, L.K. Jiang, X.C. Cao, R.Z. Yang, C.Z. Yuan, A pore-confined strategy for synthesizing CoFe nanoparticles in mesoporous biocarbon matrix as advanced bifunctional oxygen electrocatalyst for zinc-air battery, Rare Met. 43 (11) (2024) 5757-5768. [10] J.Q. Liu, W.B. Chen, S. Yuan, T. Liu, Q. Wang, High-coordination Fe-N4SP single-atom catalysts via the multi-shell synergistic effect for the enhanced oxygen reduction reaction of rechargeable Zn-air battery cathodes, Energy Environ. Sci. 17 (1) (2024) 249-259. [11] X.J. Zheng, Y.H. Qian, H.Y. Gong, W.H. Shi, J. Yan, W.T. Wang, X.M. Guo, J.H. Zhang, X.C. Cao, R.Z. Yang, Bridge-linking interfacial engineering of triple carbons for highly efficient and binder-free electrodes toward flexible Zn-air batteries, Appl. Catal. B Environ. 319 (2022) 121937. [12] H. Li, R.W. Meng, C. Ye, A. Tadich, W.X. Hua, Q.F. Gu, B. Johannessen, X. Chen, K. Davey, S.Z. Qiao, Developing high-power Li||S batteries via transition metal/carbon nanocomposite electrocatalyst engineering, Nat. Nanotechnol. 19 (6) (2024) 792-799. [13] S.Z. He, J.Y. Wang, C.W. Sun, Boosted electrocatalytic activity and durability of CuFe/NC by modulating the interfacial composition and electronic structure for efficient oxygen reduction reaction, J. Colloid Interface Sci. 677 (Pt A) (2025) 771-780. [14] Q.Q. Wu, Y.T. Zhong, R.M. Chen, G.Y. Ling, X.H. Wang, Y.R. Shen, C. Hao, Cu-Ag-C@Ni3S4 with core shell structure and rose derived carbon electrode materials: an environmentally friendly supercapacitor with high energy and power density, Ind. Crops Prod. 222 (2024) 119676. [15] T. Wei, M.T. Wang, Y.Y. Zhou, X.T. Guo, S.J. Wang, Y. Liu, C. Sun, Q. Wang, V-MOF-derived V2O5 nanoparticles-modified carbon fiber cloth-based dendrite-free anode for high-performance lithium metal batteries, Chin. J. Chem. Eng. 71 (2024) 13-23. [16] X.K. Wang, Y. Pan, X.H. Wang, Y.N. Guo, C.H. Ni, J.B. Wu, C. Hao, High performance hybrid supercapacitors assembled with multi-cavity nickel cobalt sulfide hollow microspheres as cathode and porous typha-derived carbon as anode, Ind. Crops Prod. 189 (2022) 115863. [17] H.B. Meng, B. Wu, D.T. Zhang, X.H. Zhu, S.Z. Luo, Y. You, K. Chen, J.C. Long, J.X. Zhu, L.P. Liu, S.B. Xi, T. Petit, D.S. Wang, X.M. Zhang, Z.J. Xu, L.Q. Mai, Optimizing electronic synergy of atomically dispersed dual-metal Ni-N4 and Fe-N4 sites with adjacent Fe nanoclusters for high-efficiency oxygen electrocatalysis, Energy Environ. Sci. 17 (2) (2024) 704-716. [18] X.T. Wu, Z.Y. Shao, Q. Zhu, X.Y. Hou, C. Wang, J.R. Zeng, K.K. Huang, S.H. Feng, Tuning the d-band center of Co3O4 via octahedral and tetrahedral codoping for oxygen evolution reaction, ACS Catal. 14 (8) (2024) 5888-5897. [19] J. Liu, W.Q. Yu, M.D. Wang, J. Gao, X.J. Cui, L.H. Jiang, Volcano relationship of electron polarization degree in core-shelled Ni@C catalysts and catalytic activity for hydrogen oxidation reaction, ACS Catal. 15 (5) (2025) 4110-4120. [20] Q. Zhang, W. Xiao, H.C. Fu, X.L. Li, J.L. Lei, H.Q. Luo, N.B. Li, Unraveling the mechanism of self-repair of NiFe-based electrocatalysts by dynamic exchange of iron during the oxygen evolution reaction, ACS Catal. 13 (22) (2023) 14975-14986. [21] R.S. Kumar, S. Tamilarasi, A.M. Stephan, A.R. Kim, D.J. Yoo, CrS doped MOF-derived carbon implanted CoNi particles as exceedingly effectual oxygen electrocatalysts in sustainable zinc-air batteries, Small Methods 9 (4) (2025) e2401515. [22] F.B. Wang, L. Wang, B. Wang, Z.X. Jing, D. Ding, X.F. Yang, Y.Y. Kong, J.M. Dou, M. Mamoor, L.Q. Xu, Cognate cobalt core-shell structure decorated nitrogen-doped hollow carbon bowls triggering advanced zinc-air battery, Adv. Funct. Mater. 35 (7) (2025) 2415326. [23] M. Zhou, M.R. Wu, H.W. Yu, X.J. Zheng, K. Shen, X.M. Guo, Y.J. Liu, F. Cao, H.X. Gu, Q.H. Kong, J.H. Zhang, Controllable fabrication of FeCoS4 nanoparticles/S-doped bowl-shaped hollow carbon as efficient lithium storage anode, Chin. J. Chem. Eng. 67 (2024) 78-88. [24] J.K. Liang, H.X. Li, L. Chen, M.N. Ren, O.A. Fakayode, J.Y. Han, C.S. Zhou, Efficient hydrogen evolution reaction performance using lignin-assisted chestnut shell carbon-loaded molybdenum disulfide, Ind. Crops Prod. 193 (2023) 116214. [25] Y. Huang, Y.C. Chen, M.J. Xu, T. Asset, P. Tieu, A. Gili, D. Kulkarni, V. De Andrade, F. De Carlo, H.S. Barnard, A. Doran, D.Y. Parkinson, X.Q. Pan, P. Atanassov, I.V. Zenyuk, Catalysts by pyrolysis: Direct observation of chemical and morphological transformations leading to transition metal-nitrogen-carbon materials, Mater. Today 47 (2021) 53-68. [26] C.J. Wrasman, A.N. Wilson, O.D. Mante, K. Iisa, A. Dutta, M.S. Talmadge, D.C. Dayton, S. Uppili, M.J. Watson, X.C. Xu, M.B. Griffin, C. Mukarakate, J.A. Schaidle, M.R. Nimlos, Catalytic pyrolysis as a platform technology for supporting the circular carbon economy, Nat. Catal. 6 (2023) 563-573. [27] S. Hussain, J.C. Stallard, C. Jourdain, M.W.J. Glerum, J. Peden, R.L. Qiao, A.M. Boies, Measurement of high carbon nanotube growth rate, mass production, agglomeration, and length in a floating catalyst chemical vapor deposition reactor, ACS Nano 19 (9) (2025) 8739-8752. [28] J.S. Bulmer, A.W.N. Sloan, M. Glerum, J. Carpena-Nunez, R. Waelder, J. Humes, A.M. Boies, M. Pasquali, R. Rao, B. Maruyama, Forecasting carbon nanotube diameter in floating catalyst chemical vapor deposition, Carbon 201 (2023) 719-733. [29] X.J. Zheng, X.C. Cao, K. Zeng, J. Yan, Z.H. Sun, M.H. Rummeli, R.Z. Yang, A self-jet vapor-phase growth of 3D FeNi@NCNT clusters as efficient oxygen electrocatalysts for zinc-air batteries, Small 17 (4) (2021) 2006183. [30] M. Mennani, A. Ait Benhamou, A.A. Mekkaoui, F. El Bachraoui, M. El Achaby, A. Moubarik, Z. Kassab, Probing the evolution in catalytic graphitization of biomass-based materials for enduring energetic applications, J. Mater. Chem. A 12 (12) (2024) 6797-6825. [31] J.J. Huo, J.P. Tessonnier, B.H. Shanks, Improving hydrothermal stability of supported metal catalysts for biomass conversions: a review, ACS Catal. 11 (9) (2021) 5248-5270. [32] W. Henao, F. Cazana, P. Tarifa, E. Romeo, N. Latorre, V. Sebastian, J.J. Delgado, A. Monzon, Selective synthesis of carbon nanotubes by catalytic decomposition of methane using Co-Cu/cellulose derived carbon catalysts: a comprehensive kinetic study, Chem. Eng. J. 404 (2021) 126103. [33] L. Quan, H. Jiang, G.L. Mei, Y.J. Sun, B. You, Bifunctional electrocatalysts for overall and hybrid water splitting, Chem. Rev. 124 (7) (2024) 3694-3812. [34] B.B. He, Y. Zu, Y. Mei, Design of advanced electrocatalysts for the high-entropy alloys: Principle, progress, and perspective, J. Alloys Compd. 958 (2023) 170479. [35] H.J. Zou, Y. Leng, C.S. Yin, X.K. Yang, C.G. Min, F. Tan, A.M. Ren, Enhancing oxygen reduction reaction electrocatalytic performance of nickel-nitrogen-carbon catalysts through coordination environment engineering, Chin. J. Chem. 43 (3) (2025) 297-307. [36] Y.L. Luo, Y. Deng, P.F. Li, R.Y. Gao, R.J. Bian, X. Wu, Atomically integration of O-bridged Co-Fe hetero-pairs as tandem photocatalyst towards highly efficient hydroxyl radicals production, Appl. Catal. B Environ. Energy 356 (2024) 124255. [37] P. Acharya, R.H. Manso, A.S. Hoffman, S.I.P. Bakovic, L. Kekedy-Nagy, S.R. Bare, J.Y. Chen, L.F. Greenlee, Fe coordination environment, Fe-incorporated Ni(OH)2 phase, and metallic core are key structural components to active and stable nanoparticle catalysts for the oxygen evolution reaction, ACS Catal. 12 (3) (2022) 1992-2008. [38] Y. Ye, L. Zhang, Q.L. Zhu, Z.A. Du, T. Wagberg, G.Z. Hu, Interface engineering induced charge rearrangement boosting reversible oxygen electrocatalysis activity of heterogeneous FeCo-MnO@N-doped carbon nanobox, J. Colloid Interface Sci. 650 (Pt B) (2023) 1350-1360. [39] S.L. Jiao, X.W. Fu, H.W. Huang, Descriptors for the evaluation of electrocatalytic reactions: d-band theory and beyond, Adv. Funct. Mater. 32 (4) (2022) 2107651. |