Chin.J.Chem.Eng. ›› 2016, Vol. 24 ›› Issue (1): 39-47.DOI: 10.1016/j.cjche.2015.07.013
Previous Articles Next Articles
Yingying Xie1, Weimin Zhang1, Shuang Gu2, Yushan Yan2, Zi-Feng Ma1
Received:
2014-11-24
Revised:
2015-06-06
Online:
2016-02-23
Published:
2016-01-28
Contact:
Zi-Feng Ma
Supported by:
Supported by the National Basic Research Program of China (2014CB239703), the National Natural Science Foundation of China (21336003), and the Science and Technology Commission of Shanghai Municipality (14DZ2250800).
Yingying Xie1, Weimin Zhang1, Shuang Gu2, Yushan Yan2, Zi-Feng Ma1
通讯作者:
Zi-Feng Ma
基金资助:
Supported by the National Basic Research Program of China (2014CB239703), the National Natural Science Foundation of China (21336003), and the Science and Technology Commission of Shanghai Municipality (14DZ2250800).
Yingying Xie, Weimin Zhang, Shuang Gu, Yushan Yan, Zi-Feng Ma. Process engineering in electrochemical energy devices innovation[J]. Chin.J.Chem.Eng., 2016, 24(1): 39-47.
Yingying Xie, Weimin Zhang, Shuang Gu, Yushan Yan, Zi-Feng Ma. Process engineering in electrochemical energy devices innovation[J]. Chinese Journal of Chemical Engineering, 2016, 24(1): 39-47.
[1] S. Gu, B.J. Xu, Y.S. Yan, Electrochemical energy engineering: A new frontier of chemical engineering innovation, Annu. Rev. Chem. Biomol. Eng. 5 (2014) 429-454. [2] W. Juda, W.A.McRae, Coherent ion-exchange gels andmembranes, J. Am. Chem. Soc. 72 (1950) 1043-1044. [3] W.T. Grubb, Fuel cell, US Patent No. 2913511 (1959). [4] M.S. Wilson, S. Gottesfeld, Thin-film catalyst layers for polymer electrolyte fuel-cell electrodes, J. Appl. Electrochem. 22 (1992) 1-7. [5] R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells, Nature 443 (2006) 63-66. [6] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science 332 (2011) 443-447. [7] X. Yuan, X.L. Ding, C.Y. Wang, Z.F. Ma, Use of polypyrrole in low temperature fuel cells, Energy Environ. Sci. 6 (4) (2013) 1105-1124. [8] E.W. Justi, A.W. Winsel, The DSK system of fuel cell electrodes, J. Electrochem. Soc. 108 (1961) 1073-1079. [9] E. Agel, J. Bouet, J.F. Fauvarque, Characterization and use of anionic membranes for alkaline fuel cells, J. Power Sources 101 (2001) 267-274. [10] J.R. Varcoe, R.C.T. Slade, Prospects for alkaline anion-exchange membranes in low temperature fuel cells, Fuel Cells 5 (2005) 187-200. [11] S.F. Lu, J. Pan, A.B. Huang, L. Zhuang, J.T. Lu, Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 20611-20614. [12] S. Gu,W.C. Sheng, R. Cai, S.M. Alia, S.Q. Song, Y.S. Yan, An efficient Ag-ionomer interface for hydroxide exchange membrane fuel cells, Chem. Commun. 49 (2013) 131-133. [13] M. Piana, M. Boccia, A. Filpi, E. Flammia, H.A. Miller, H2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst, J. Power Sources 195 (2010) 5875-5881. [14] Z. Li, Z.Y. Jiang, H.M. Tian, S. Wang, B. Zhang, H. Wu, Preparing alkaline anion exchange membrane with enhanced hydroxide conductivity via blending imidazolium-functionalized and sulfonated poly(ether ether ketone), J. Power Sources 288 (2015) 384-392. [15] X. Yan, S. Gu, G. He, X. Wu, W. Zheng, X. Ruan, Quaternary phosphoniumfunctionalized poly(ether ether ketone) as highly conductive and alkali-stable hydroxide exchange membrane for fuel cells, J. Membr. Sci. 466 (2014) 220-228. [16] B.E. Conway, G. Jerkiewicz, Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H-2 evolution kinetics, Electrochim. Acta 45 (2000) 4075-4083. [17] W.C. Sheng, M. Myint, J.G. Chen, Y.S. Yan, Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces, Energy Environ. Sci. 6 (2013) 1509-1512. [18] F. Munoz, C. Hua, T. Kwong, L. Tran, T.Q. Nguyen, J.L. Haan, Palladium-copper electrocatalyst for the promotion of the electrochemical oxidation of polyalcohol fuels in the alkaline direct alcohol fuel cell, Appl. Catal. B Environ. 174-175 (2015) 323-328. [19] C.Z. Guo, W.L. Liao, C.G. Chen, Design of a non-precious metal electrocatalyst for alkaline electrolyte oxygen reduction by using soybean biomass as the nitrogen source of electrocatalytically active center structures, J. Power Sources 269 (2014) 841-847. [20] H.J. Zhang, H.L. Li, X.T. Li, S.Y. Zheng, B. Zhao, J.H. Yang, Highly active electrocatalyst for oxygen reduction reaction from pyrolyzing carbon-supported iron tetraethylenepentamine complex, Appl. Catal. B Environ. 160 (2014) 676-683. [21] C. Dominguez, F.J. Perez-Alonso, S.A. Al-Thabaiti, S.N. Basahel, A.Y. Obaid, A.O. Alyoubi, J.L.G. de la Fuente, S. Rojas, Effect of N and S co-doping of multiwalled carbon nanotubes for the oxygen reduction, Electrochim. Acta 157 (2015) 158-165. [22] S.J. Chao, Z.Y. Bai, Q. Cui, H.Y. Yan, K.Wang, L. Yang, Hollowed-out octahedral Co/Ncodoped carbon as a highly efficient non-precious metal catalyst for oxygen reduction reaction, Carbon 82 (2015) 77-86. [23] C.H. Wang, C.W. Yang, Y.C. Lin, S.T. Chang, S.L.Y. Chang, Cobalt-iron(II, III) oxide hybrid catalysis with enhanced catalytic activities for oxygen reduction in anion exchange membrane fuel cell, J. Power Sources 277 (2015) 147-154. [24] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phosphoolivines as positiveelectrode materials for rechargeable lithium batteries, J. Electrochem. Soc. 144 (4) (1997) 1188-1194. [25] X.Z. Liao, Z.F. Ma, Y.S. He, X.M. Zhang, L.Wang, Y. Jiang, Electrochemical behavior of LiFePO4/C cathode material for rechargeable lithium batteries, J. Electrochem. Soc. 152 (10) (2005) A1969-A1972. [26] K.D. Yang, F.X. Tan, F.Wang, Y.F. Long, Y.X.Wen, Response surface optimization for process parameters of LiFePO4/C preparation by carbothermal reduction technology, Chin. J. Chem. Eng. 20 (4) (2012) 793-802. [27] Y.J. Zhang, Y.F. Yang, X.Y. Wang, S.S. Li, Synthesis of sub-micrometer lithium iron phosphate particles for lithium ion battery by using supercritical hydrothermal method, Chin. J. Chem. Eng. 22 (2) (2014) 234-237. [28] Z.W. Xiao, G.R. Hu, K. Du, Z.D. Peng, A facile route for synthesis of LiFePO4/C cathode material with nano-sized primary particles, Chin. J. Chem. Eng. 22 (5) (2014) 590-595. [29] X.Z. Liao, Z.F. Ma, L. Wang, X.M. Zhang, Y. Jiang, Y.S. He, A new synthesis route for LiFePO4/C cathode materials for lithium ion batteries, Electrochem. Solid-State Lett. 7 (12) (2004) A522-A525. [30] D. Zhang, R. Cai, Y.K. Zhou, Z.P. Shao, X.Z. Liao, Z.F. Ma, Effect of milling method and time on the properties and electrochemical performance of LiFePO4/C composites prepared by ball milling and thermal treatment, Electrochim. Acta 55 (2010) 2653-2661. [31] X.M. Liu, P. Yan, Y.Y. Xie, H. Yang, X.D. Shen, Z.F. Ma, Synthesis of superior fast charging-discharging nano-LiFePO4/C from nano-FePO4 generated using a confined area impinging jet reactor approach, Chem. Commun. 49 (47) (2013) 5396-5398. [32] X.Z. Liao, Y.S. He, Z.F. Ma, X.M. Zhang, L.Wang, Effects of fluorine-substitution on the electrochemical behavior of LiFePO4/C cathode materials, J. Power Sources 174 (2) (2007) 720-725. [33] Y. Shi, S.L. Chou, J.Z. Wang, D. Wexler, H.J. Li, H.K. Liu, Y.P. Wu, Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capacity, J. Mater. Chem. 22 (32) (2012) 16465-16470. [34] X.Z. Liao, Z.F. Ma, Q. Gong, Y.S. He, L. Pei, L.J. Zeng, Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte, Electrochem. Commun. 10 (2008) 691-694. [35] Z.F. Ma, X.Z. Yuan, D. Dan Li, X.Z. Liao, Structrual and electrochemical characterization of carbonaceous mesophase spherule anode material for rechargeable lithium batteries, Electrochem. Commun. 4 (2) (2002) 188-192. [36] Y.S. He, P.F. Gao, J. Chen, X.W. Yang, X.Z. Liao, J. Yang, Z.F. Ma, A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries, RSC Adv. 1 (2011) 958-960. [37] G.W. Zhou, J.L.Wang, P.F. Gao, X.W. Yang, Y.S. He, X.Z. Liao, J. Chen, Z.F. Ma, A facile spray drying route for the 3D graphene-encapsulated Fe2O3 nanoparticles for lithium ion battery anodes, Ind. Eng. Chem. Res. 52 (3) (2013) 1197-1204. [38] T. Yuan, W.T. Li, W.M. Zhang, Y.S. He, C.M. Zhang, X.Z. Liao, Z.F. Ma, One-pot spraydried graphene sheets-encapsulated nano-Li4Ti5O12 microspheres for a hybrid batCap system, Ind. Eng. Chem. Res. 53 (27) (2014) 10849-10857. [39] R. Koo, Advanced Li-ion polymer battery cellmanufacturing plant in USA, 2012 DOE AMR Meeting, May 16-20, Washington DC, arravt001, 2012. [40] Y.K. Son, Significant cost improvement of Li-ion cells through non-NMP electrode coating, direct separator coating, and fast formation technologies, 2014 DOE AMR Meeting, June 17-20, Washington DC, ES133, 2014. [41] D.L. Wood, J.L. Li, C. Daniel, D. Mohanty, S. Nagpure, Overcoming processing cost barriers of high performance lithium-ion battery electrodes, 2014 DOE AMR Meeting, June 17-20, Washington DC, ES164, 2014. [42] D. Mohanty, J.L. Li, R. Born, L.C. Maxey, R.B. Dinwiddie, C. Daniel, D.L. Wood, Nondestructive evaluation of slot-die-coated lithium secondary battery electrodes by in-line laser caliper and IR thermography methods, Anal. Methods 6 (3) (2014) 674. [43] J. Arnold, G. Voelker, Utilization of UV or EB curing technology to significantly reduce costs and VOCs in the manufacture of lithium-ion battery electrode, 2014 DOE AMR Meeting, June 17-20, Washington DC, ES132, 2014. [44] C.J. Bae, C.K. Erdonmez, J.W. Halloran, Y.M. Chiang, Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance, Adv. Mater. 25 (2013) 1254-1258. [45] S.J. Dillon, K. Sun, Microstructural design considerations for Li-ion battery systems, Curr. Opin. Solid State Mater. Sci. 16 (2012) 153-162. [46] Y.S. Chen, K.H. Chang, C.C. Hu, T.T. Cheng, Performance comparisons and resistance modeling for multi-segment, electrode designs of power-oriented lithium-ion batteries, Electrochim. Acta 55 (2010) 6433-6439. [47] M. Majima, T. Tada, S. Ujiie, E. Yagasaki, S. Inazawa, K. Miyazaki, Design and characteristics of large-scale lithium ion battery, J. Power Sources 81-82 (1999) 877-881. [48] K.H. Kwon, C.B. Shin, T.H. Kang, C.S. Kim, A two-dimensional modeling of a lithiumpolymer battery, J. Power Sources 3 (2006) 151-157. [49] U.S. Kim, C.B. Shin, C.S. Kim, Modeling for the scale-up of a lithium-ion polymer battery, J. Power Sources 189 (2009) 841-846. [50] M. Wang, J.J. Li, X.M. He, H. Wu, C.R. Wan, The effect of local current density on electrode design for lithium-ion batteries, J. Power Sources 207 (2012) 127-133. [51] S. De, P.W.C. Northrop, V. Ramadesigan, V.R. Subramanian, Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density, J. Power Sources 227 (2013) 161-170. [52] S.C. Chen, C.C. Wan, Y.Y. Wang, Thermal analysis of lithium-ion batteries, J. Power Sources 140 (2005) 111-124. [53] U.S. Kim, J. Yi, C.B. Shin, T. Han, S. Park, Modelling the thermal behaviour of a lithium-ion battery during charge, J. Power Sources 196 (2011) 5115-5121. [54] W. Wu, X.R. Xiao, X.S. Huang, The effect of battery design parameters on heat generation and utilization in a Li-ion cell, Electrochim. Acta 83 (2012) 227-240. [55] A. Samba, N. Omar, H. Gualous, Y. Firouz, P.V. Bossche, J.V. Mierlo, T.I. Boubekeur, Development of an advanced two-dimensional thermal model for large size lithium-ion pouch cells, Electrochim. Acta 117 (2014) 246-254. [56] P. Taheri, A. Mansouri, M. Yazdanpour, M. Bahrami, Theoretical analysis of potential and current distributions in planar electrodes of lithium-ion batteries, Electrochim. Acta 133 (2014) 197-208. [57] P.S. Attidekou, S. Lambert, M. Armstrong, J. Widmer, K. Scott, P.A. Christensen, A study of 40 A h lithium ion batteries at zero percent state of charge as a function of temperature, J. Power Sources 269 (2014) 694-703. [58] S. Jung, D. Kang, Multi-dimensional modeling of large-scale lithium-ion batteries, J. Power Sources 248 (2014) 498-509. [59] Y.J. He, J.N. Shen, J.F. Shen, Z.F. Ma, Embedding monotonicity in the construction of polynomial open-circuit voltage model for lithium-ion batteries: A semi-infinite programming formulation approach, Ind. Eng. Chem. Res. 54 (12) (2015) 3167-3174. [60] Y.J. He, J.N. Shen, J.F. Shen, Z.F. Ma, State of health estimation of lithium-ion batteries: A multiscale Gaussian process regression modeling approach, AIChE J. 61 (5) (2015) 1589-1600. |
[1] | Ruicheng Shen, Shaojun Niu, Guobin Zhu, Kai Wu, Honghe Zheng. Mechanical behavior analysis of high power commercial lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 315-322. |
[2] | Kai Xue, Yanchun Xue, Jing Wang, Shuya Zhang, Xingmei Guo, Xiangjun Zheng, Fu Cao, Qinghong Kong, Junhao Zhang, Zhong Jin. KOH-assisted aqueous synthesis of ZIF-67 with high-yield and its derived cobalt selenide/carbon composites for high-performance Li-ion batteries [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 214-223. |
[3] | Luyao Guo, Mengru Wang, Ronghe Lin, Jiaxin Ma, Shuanghao Zheng, Xiaoling Mou, Jun Zhang, Zhong-Shuai Wu, Yunjie Ding. Assembly of N- and P-functionalized carbon nanostructures derived from precursor-defined ternary copolymers for high-capacity lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 280-288. |
[4] | Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 101-123. |
[5] | Wei Hong, Xinran Shen, Jian Wang, Xin Feng, Wenjing Zhang, Jing Li, Zidong Wei. High-loading Pt-alloy catalysts for boosted oxygen reduction reaction performance [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 30-35. |
[6] | Zijun Li, Shubo Wang, Sai Yao, Xueke Wang, Weiwei Li, Tong Zhu, Xiaofeng Xie. Experimental and numerical study on improvement performance by wave parallel flow field in a proton exchange membrane fuel cell [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 90-102. |
[7] | Yingjie Zhou, Wenhui Zhang, Shengwei Yu, Haibo Jiang, Chunzhong Li. Patterned catalyst layer boosts the performance of proton exchange membrane fuel cells by optimizing water management [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 246-252. |
[8] | Xiaobin Liu, Zhenguo Gao, Jingcai Cheng, Junbo Gong, Jingkang Wang. Research progress on preparation and purification of fluorine-containing chemicals in lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 73-84. |
[9] | Suransh Jain, Arvind Kumar Mungray. Comparative study of different hydro-dynamic flow in microbial fuel cell stacks [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 423-430. |
[10] | Xiaosa Xu, Yuqian Qiu, Jianping Wu, Baichuan Ding, Qianhui Liu, Guangshen Jiang, Qiongqiong Lu, Jiangan Wang, Fei Xu, Hongqiang Wang. Porous nitrogen-enriched hollow carbon nanofibers as freestanding electrode for enhanced lithium storage [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 416-422. |
[11] | Xiaodong Tang, Qiankun Guo, Miaomiao Zhou, Shengwen Zhong. Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 278-286. |
[12] | Chengyi Ai, Tingting Li, Rongzheng Ren, Zhenhua Wang, Wang Sun, Jinsheng Feng, Kening Sun, Jinshuo Qiao. Barium-doped Pr2Ni0.6Cu0.4O4+δ with triple conducting characteristics as cathode for intermediate temperature proton conducting solid oxide fuel cell [J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 269-276. |
[13] | Chenxing Yi, Lijie Zhou, Xiqing Wu, Wei Sun, Longsheng Yi, Yue Yang. Technology for recycling and regenerating graphite from spent lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 37-50. |
[14] | Muhammad A. Imran, Tiantian Li, Xuemei Wu, Xiaoming Yan, Abdul-Sammed Khan, Gaohong He. Sulfonated polybenzimidazole/amine functionalized titanium dioxide (sPBI/AFT) composite electrolyte membranes for high temperature proton exchange membrane fuel cells usage [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2425-2437. |
[15] | Tiantian Li, Xuemei Wu, Wanting Chen, Xiaoming Yan, Dongxing Zhen, Xue Gong, Jiafei Liu, Shaofeng Zhang, Gaohong He. Poly (ether ether ketone ketone) based imidazolium as anion exchange membranes for alkaline fuel cells [J]. Chin.J.Chem.Eng., 2018, 26(10): 2130-2138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||