[1] A.K. Mitra, Chemistry of petrochemical processes second edition by Sami Matar & Lewis F. Hatch, Indian Chem. Eng. 44(1) (2002) 64.[2] B. Nkosi, N.J. Coville, G.J. Hutchings, Reactivation of a supported gold catalyst for acetylene hydrochlorination, J. Chem. Soc. Chem. Commun. (1) (1988) 71-72.[3] B. Nkosi, M.D. Adams, N.J. Coville, G.J. Hutchings, Hydrochlorination of acetylene using carbon-supported gold catalysts: A study of catalyst reactivation, J. Catal. 128(2) (1991) 378-386.[4] M. Conte, A.F. Carley, C. Heirene, D.J.Willock, P. Johnston, A.A. Herzing, C.J. Kiely, G.J. Hutchings, Hydrochlorination of acetylene using a supported gold catalyst: A study of the reaction mechanism, J. Catal. 250(2) (2007) 231-239.[5] L.Wang, F. Wang, J.Wang, X. Tang, Y. Zhao, D. Yang, F. Jia, T. Hao, Hydrochlorination of acetylene to vinyl chloride over Pd supported on zeolite Y, React. Kinet. Mech. Catal. 110(1) (2013) 187-194.[6] J. Zhang, W. Sheng, C. Guo, W. Li, Acetylene hydrochlorination over bimetallic Rubased catalysts, RSC Adv. 3(43) (2013) 21062-21068.[7] Y. Pu, J. Zhang, L. Yu, Y. Jin, W. Li, Active ruthenium species in acetylene hydrochlorination, Appl. Catal. A Gen. 488(2014) 28-36.[8] F.Wang, L.Wang, J.Wang, Y. Zhao, Y.Wang, D. Yang, Bimetallic Pd-K/Y-zeolite catalyst in acetylene hydrochlorination for PVC production, React. Kinet. Mech. Catal. 114(2) (2015) 725-734.[9] B. Nkosi, N.J. Coville, G.J. Hutchings, M.D. Adams, J. Friedl, F.E. Wagner, Hydrochlorination of acetylene using gold catalysts: A study of catalyst deactivation, J. Catal. 128(2) (1991) 366-377.[10] H. Zhang, B. Dai, X. Wang, L. Xu, M. Zhu, Hydrochlorination of acetylene to vinyl chloride monomer over bimetallic Au-La/SAC catalysts, J. Ind. Eng. Chem. 18(1) (2012) 49-54.[11] H. Zhang, B. Dai, X. Wang,W. Li, Y. Han, J. Gu, J. Zhang, Non-mercury catalytic acetylene hydrochlorination over bimetallic Au-Co(III)/SAC catalysts for vinyl chloride monomer production, Green Chem. 15(3) (2013) 829-836.[12] M. Conte, A.F. Carley, G.J. Hutchings, Reactivation of a carbon-supported gold catalyst for the hydrochlorination of acetylene, Catal. Lett. 124(3-4) (2008) 165-167.[13] M. Conte, C.J. Davies, D.J. Morgan, T.E. Davies, D.J. Elias, A.F. Carley, P. Johnston, G.J. Hutchings, Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene, J. Catal. 297(2013) 128-136.[14] C. Huang, M. Zhu, L. Kang, X. Li, B. Dai, Active carbon supported TiO2-AuCl3/AC catalyst with excellent stability for acetylene hydrochlorination reaction, Chem. Eng. J. 242(2014) 69-75.[15] J. Xu, J. Zhao, J. Xu, T. Zhang, X. Li, X. Di, J. Ni, J. Wang, J. Cen, Influence of surface chemistry of activated carbon on the activity of gold/activated carbon catalyst in acetylene hydrochlorination, Ind. Eng. Chem. Res. 53(37) (2014) 14272-14281.[16] H. Zhang,W. Li, X. Li,W. Zhao, J. Gu, X. Qi, Y. Dong, B. Dai, J. Zhang, Non-mercury catalytic acetylene hydrochlorination over bimetallic Au-Ba(II)/AC catalysts, Catal. Sci. Technol. 5(3) (2015) 1870-1877.[17] J. Zhao, J. Xu, J. Xu, J. Ni, T. Zhang, X. Xu, X. Li, Activated-carbon-supported gold-cesium(I) as highly effective catalysts for hydrochlorination of acetylene to vinyl chloride, ChemPlusChem 80(1) (2015) 196-201.[18] J. Zhao, J. Xu, J. Xu, T. Zhang, X. Di, J. Ni, X. Li, Enhancement of Au/AC acetylene hydrochlorination catalyst activity and stability via nitrogen-modified activated carbon support, Chem. Eng. J. 262(2015) 1152-1160.[19] J. Zhao, T. Zhang, X. Di, J. Xu, J. Xu, F. Feng, J. Ni, X. Li, Nitrogen-modified activated carbon supported bimetallic gold-cesium(I) as highly active and stable catalyst for the hydrochlorination of acetylene, RSC Adv. 5(9) (2015) 6925-6931.[20] X. Li, X. Pan, X. Bao, Nitrogen doped carbon catalyzing acetylene conversion to vinyl chloride, J. Energy Chem. 23(2) (2014) 131-135.[21] X. Li, Y.Wang, L. Kang, M. Zhu, B. Dai, A novel, non-metallic graphitic carbon nitride catalyst for acetylene hydrochlorination, J. Catal. 311(2014) 288-294.[22] X.Wang, B. Dai, Y.Wang, F. Yu, Nitrogen-doped pitch-based spherical active carbon as a nonmetal catalyst for acetylene hydrochlorination, ChemCatChem 6(8) (2014) 2339-2344.[23] G. Luo, K. Zhou, W. Wang, F. Wei, Gold-based catalysts for acetylene hydrochlorination, US20140213437A1(2014).[24] C. Zhang, L. Kang, M. Zhu, B. Dai, Nitrogen-doped active carbon as a metal-free catalyst for acetylene hydrochlorination, RSC Adv. 5(10) (2015) 7461-7468.[25] X. Li, X. Pan, L. Yu, P. Ren, X.Wu, L. Sun, F. Jiao, X. Bao, Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene, Nat. Commun. 5(2014) 3688.[26] D.S. Su, J. Zhang, B. Frank, A. Thomas, X.Wang, J. Paraknowitsch, R. Schloegl, Metalfree heterogeneous catalysis for sustainable chemistry, ChemSusChem 3(2) (2010) 169-180.[27] P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis, Appl. Catal. A 253(2) (2003) 337-358.[28] O. Netskina, O. Komova, E. Tayban, G. Oderova, S.Mukha, G. Kuvshinov, V. Simagina, The influence of acid treatment of carbon nanofibers on the activity of palladium catalysts in the liquid-phase hydrodechlorination of dichlorobenzene, Appl. Catal. A Gen. 467(2013) 386-393.[29] M.F.R. Pereira, J.J.M. Orfao, J.L. Figueiredo, Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. I. Influence of surface chemical groups, Appl. Catal. A 184(1) (1999) 153-160.[30] B.F. Machado, M. Oubenali, M. Rosa Axet, T. Trang Nguyen, M. Tunckol, M. Girleanu, O. Ersen, I.C. Gerber, P. Serp, Understanding the surface chemistry of carbon nanotubes: Toward a rational design of Ru nanocatalysts, J. Catal. 309(2014) 185-198.[31] Z.J. Sui, J.H. Zhou, Y.C. Dai, W.K. Yuan, Oxidative dehydrogenation of propane over catalysts based on carbon nanofibers, Catal. Today 106(1-4) (2005) 90-94.[32] E.G. Rodrigues, M.F.R. Pereira, X. Chen, J.J. Delgado, J.J.M. Orfao, Influence of activated carbon surface chemistry on the activity of Au/AC catalysts in glycerol oxidation, J. Catal. 281(1) (2011) 119-127.[33] J.H. Zhou, Z.J. Sui, J. Zhu, P. Li, D. Chen, Y.C. Dai,W.K. Yuan, Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR, Carbon 45(4) (2007) 785-796.[34] J. Qiu, G. Wang, D. Zeng, Y. Bao, Y. Zhang, Oxidative modification of coal tar pitchbased mesoporous activated carbon surface using nitric acid, Cailiao Daobao 27(3b) (2013) 123-127.[35] C. Milone, A.R.S. Hameed, E. Piperopoulos, S. Santangelo, M. Lanza, S. Galvagno, Catalyticwet air oxidation of p-coumaric acid over carbon nanotubes and activated carbon, Ind. Eng. Chem. Res. 50(15) (2011) 9043-9053.[36] G.E. Romanos, V. Likodimos, R.R.N. Marques, T.A. Steriotis, S.K. Papageorgiou, J.L. Faria, J.L. Figueiredo, A.M.T. Silva, P. Falaras, Controlling and quantifying oxygen functionalities on hydrothermally and thermally treated single-wall carbon nanotubes, J. Phys. Chem. C 115(17) (2011) 8534-8546.[37] Z. Mou, X. Chen, Y. Du, X. Wang, P. Yang, S. Wang, Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea, Appl. Surf. Sci. 258(5) (2011) 1704-1710.[38] G. Yang, H. Han, T. Li, C. Du, Synthesis of nitrogen-doped porous graphitic carbons using nano-CaCO3 as template, graphitization catalyst, and activating agent, Carbon 50(10) (2012) 3753-3765.[39] W. Gao, S. Guo, H. Zhang, X. Pan, X. Bao, Enhanced ammonia synthesis activity of Ru supported on nitrogen-doped carbon nanotubes, Cuihua Xuebao 32(8) (2011) 1418-1423. |