[1] R. Gao, R. Hao, D. Liu, L. Wang, J. Zhu, L. Zuo, Z. Yan, H. Liu, S. Wei, Preparing piperacillin acid involves adding ampicillin in water in reactor to prepare buffer solution, and then mixing dioxo piperzine carbonyl chloride and alkaline modifier, China Pat. CN104910178 (2015). [2] Y. Xie, G.M. Huang, Y.J. Wang, Z.R. Yan, X. Wang, J. Huang, M.T. Gao, W.Y. Fei, G.S. Luo, Synthesis of piperacillin with low impurity content using a new three-feed membrane dispersion microreactor, Chem. Eng. J. 387 (2020) 124178 [3] S. Kancharla, N.A. Zoyhofski, L. Bufalini, B.F. Chatelais, P. Alexandridis, Association between nonionic amphiphilic polymer and ionic surfactant in aqueous solutions: Effect of polymer hydrophobicity and micellization, Polymers (Basel) 12 (8) (2020) E1831 [4] R.S. Kawai, M. Niki, S. Yada, T. Yoshimura, Physicochemical and solution properties of quaternary-ammonium-salt-type amphiphilic gemini ionic liquids with spacers containing oxygen or nitrogen, Colloids Surf. A: Physicochem. Eng. Aspects 603 (2020) 125218 [5] A.K. Sood, M. Aggarwal, Mixed micellar and interfacial studies of triblock copolymers with amphiphilic drug ibuprofen in aqueous urea solutions, J. Surfactants Deterg. 22 (6) (2019) 1409-1418 [6] Y. Yang, M.E. Leser, A.A. Sher, D.J. McClements, Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale®), Food Hydrocoll. 30 (2) (2013) 589-596 [7] Y.B. Vysotsky, E.S. Kartashynska, D. Vollhardt, Theoretical description of 2D-cluster formation of nonionic surfactants at the air/water interface, Colloid Polym. Sci. 293 (11) (2015) 3065-3089 [8] N.R. Tummala, L. Shi, A. Striolo, Molecular dynamics simulations of surfactants at the silica-water interface: Anionic vs nonionic headgroups, J. Colloid Interface Sci. 362 (1) (2011) 135-143 [9] D.L. Wang, Y.M. Li, B. Chen, L. Zhang, Novel surfactants as green corrosion inhibitors for mild steel in 15% HCl: Experimental and theoretical studies, Chem. Eng. J. 402 (2020) 126219 [10] G.Z. Li, J.H. Mu, Y. Li, S.L. Yuan, An experimental study on alkaline/surfactant/polymer flooding systems using nature mixed carboxylate, Colloids Surf. A: Physicochem. Eng. Aspects 173 (1-3) (2000) 219-229 [11] J.E. Shaw, P.R. Stapp, Sodium carboxylates for producing low interfacial tensions between hydrocarbons and water, J. Colloid Interface Sci. 107 (1) (1985) 231-236 [12] P.P. Shah, D.J. Briedis, H.G. Robson, J.P. Conterato, In vitro activity of piperacillin compared with that of carbenicillin, ticarcillin, ampicillin, cephalothin, and cefamandole against Pseudomonas aeruginosa and Enterobacteriaceae, Antimicrob. Agents Chemother. 15 (3) (1979) 346-350 [13] K. Machka, H. Dickert, I. Braveny, In vitro activity of piperacillin compared with that of ampicillin, ticarcillin, azlocillin, and mezlocillin, Arzneimittel-Forschung 30 (2) (1980) 304-307 [14] I. Nowrouzi, A.K. Manshad, A.H. Mohammadi, Effects of dissolved carbon dioxide and ions in water on the dynamic interfacial tension of water and oil in the process of carbonated smart water injection into oil reservoirs, Fuel 243 (2019) 569-578 [15] M.H. Rausch, P.S. Schmidt, T.R. Gall, C. Giraudet, A.P. Fröba, Wetting behavior and interfacial tension of a refrigerant oil in air and refrigerant atmospheres, Int. J. Refrig. 107 (2019) 225-233 [16] Y. Song, Y. Tian, Y. Xiao, X. Ren, R. Qiao, Interfacial tensions of binary liquid-liquid systems, J. Chem. Ind. Eng. (China) 50 (5) (1999) 620-628 [17] X.F. Li, Z.R. Chen, H.H. Pan, D.X. Liu, H.R. Li, S.J. Han, Determination of dynamic interfacial tension by computer-aided pendant drop digitization—Effect of surfactant concentration on dit, J. Chem. Ind. Eng. China 52 (6) (2001) 545-548 [18] Y.H. Mori, Dynamic interfacial tension in water/n-pentane system: An experimental study using the oscillating-jet method, Chem. Eng. Sci. 143 (2016) 130-138 [19] J.H. Li, L.F. Yang, X.F. Ding, J. Chen, Y.J. Wang, G.S. Luo, H.M. Yu, Visual study of mass transfer characterization in the process of biological catalytic hydration of acrylonitrile using pendant drop method, RSC Adv. 5 (96) (2015) 79164-79171 [20] E. Teston, V. Hingot, V. Faugeras, C. Errico, M. Bezagu, M. Tanter, O. Couture, A versatile and robust microfluidic device for capillary-sized simple or multiple emulsions production, Biomed. Microdevices 20 (4) (2018) 1-12 [21] X.H. Lin, F.B. Bao, C.X. Tu, Z.Q. Yin, X.Y. Gao, J.Z. Lin, Dynamics of bubble formation in highly viscous liquid in co-flowing microfluidic device, Microfluid. Nanofluid. 23 (5) (2019) 1-9 [22] Y. Chen, Y. Cui, K. Wang, G. Luo, Droplet and bubble dispersion in step T-junction microchannel, CIESC J. 71 (2020) 265-273 [23] L.T. Li, J.S. Zhang, K. Wang, J.H. Xu, G.S. Luo, Droplet formation of H2SO4 /alkane system in a T-junction microchannel: Gravity effect, AIChE J. 62 (12) (2016) 4564-4573 [24] J.H. Xu, S.W. Li, W.J. Lan, G.S. Luo, Microfluidic approach for rapid interfacial tension measurement, Langmuir 24 (19) (2008) 11287-11292 [25] M.L. Brusseau, S. van Glubt, The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces, Water Res. 161 (2019) 17-26 [26] C. Cramer, P. Fischer, E.J. Windhab, Drop formation in a co-flowing ambient fluid, Chem. Eng. Sci. 59 (15) (2004) 3045-3058 [27] C.F. Zhou, P.T. Yue, J.J. Feng, Formation of simple and compound drops in microfluidic devices, Phys. Fluids 18 (9) (2006) 092105 |