[1] M.C. Sparenberg, S. Chergaoui, V. Sang Sefidi, P. Luis, Crystallization control via membrane distillation-crystallization: a review, Desalination 519 (2021) 115315. [2] X.B. Jiang, D.P. Lu, W. Xiao, X.H. Ruan, J. Fang, G.H. He, Membrane assisted cooling crystallization: Process model, nucleation, metastable zone, and crystal size distribution, AlChE. J. 62 (3) (2016) 829-841. [3] Y.Y. Xue, G. Li, Y. Zhang, Y.B. Shi, Z.T. Zhao, J.X. Dong, Refining technology for polyester-grade coal to ethylene glycol based on melt crystallization and its benefit analysis, Chem. Eng. Sci. 297 (2024) 120251. [4] M.X. Li, J.H. Li, X.Y. Qin, J.W. Cai, R.H. Peng, M.D. Zhang, L.D. Zhang, W. Zhao, M.Y. Chen, D.D. Han, J.B. Gong, The effects of dextran in residual impurity on trehalose crystallization and formula in food preservation, Food Chem. 442 (2024) 138326. [5] S.F. Du, L. Zhang, J. Ma, G.H. He, X.M. Yan, X.H. Ruan, W. Xiao, X.B. Jiang, Membrane-assisted combined cooling and antisolvent crystallization for improved cefuroxime sodium manufacture: From metastable zone analysis to application, Chem. Eng. Sci. 304 (2025) 121057. [6] D.J. Zhang, S.J. Xu, S.C. Du, J.K. Wang, J.B. Gong, Progress of pharmaceutical continuous crystallization, Engineering 3 (3) (2017) 354-364. [7] X.B. Jiang, Y.C. Niu, S.F. Du, G.H. He, Membrane crystallization: Engineering the crystallization via microscale interfacial technology, Chem. Eng. Res. Des. 178 (2022) 454-465. [8] E. Chabanon, D. Mangin, C. Charcosset, Membranes and crystallization processes: State of the art and prospects, J. Membr. Sci. 509 (2016) 57-67. [9] X.B. Jiang, Y.S. Shao, L. Sheng, P.Y. Li, G.H. He, Membrane crystallization for process intensification and control: a review, Engineering 7 (1) (2021) 50-62. [10] X.B. Jiang, L.H. Tuo, D.P. Lu, B.H. Hou, W. Chen, G.H. He, Progress in membrane distillation crystallization: Process models, crystallization control and innovative applications, Front. Chem. Sci. Eng. 11 (4) (2017) 647-662. [11] E. Drioli, G. Di Profio, E. Curcio, Progress in membrane crystallization, Curr. Opin. Chem. Eng. 1 (2) (2012) 178-182. [12] X.B. Jiang, D.P. Lu, W. Xiao, G.N. Li, R. Zhao, X.C. Li, G.H. He, X.H. Ruan, Interface-based crystal particle autoselection via membrane crystallization: From scaling to process control, AlChE. J. 65 (2) (2019) 723-733. [13] W.Z. Ousman, E. Alemayehu, P. Luis, Fluoride removal and recovery from water using reverse osmosis and osmotic membrane crystallization, Clean Technol. 5 (3) (2023) 973-996. [14] G. Di Profio, C. Stabile, A. Caridi, E. Curcio, E. Drioli, Antisolvent membrane crystallization of pharmaceutical compounds, J. Pharm. Sci. 98 (12) (2009) 4902-4913. [15] I. Ruiz Salmon, P. Luis, Membrane crystallization via membrane distillation, Chem. Eng. Process. Process. Intensif. 123 (2018) 258-271. [16] H. Watamura, H. Marukawa, I. Hirasawa, Filtration ability of hollow fiber membrane for production of magnesium ammonium phosphate crystals by reaction crystallization, Front. Chem. Sci. Eng. 7 (1) (2013) 55-59. [17] D.M. Zarkadas, K.K. Sirkar, Solid hollow fiber cooling crystallization, Ind. Eng. Chem. Res. 43 (22) (2004) 7163-7180. [18] S.Z. Jia, P. Yang, Z.G. Gao, Z.H. Li, C. Fang, J.B. Gong, Recent progress in antisolvent crystallization, CrystEngComm 24 (17) (2022) 3122-3135. [19] D.Y. Chen, D. Singh, K.K. Sirkar, R. Pfeffer, Continuous synthesis of polymer-coated drug particles by porous hollow fiber membrane-based antisolvent crystallization, Langmuir 31 (1) (2015) 432-441. [20] D.M. Zarkadas, K.K. Sirkar, Antisolvent crystallization in porous hollow fiber devices, Chem. Eng. Sci. 61 (15) (2006) 5030-5048. [21] L. Sheng, J. Li, G.H. He, W. Xiao, X.M. Yan, X.C. Li, X.H. Ruan, X.B. Jiang, Visual study and simulation of interfacial liquid layer mass transfer in membrane-assisted antisolvent crystallization, Chem. Eng. Sci. 228 (2020) 116003. [22] L.H. Tuo, X.H. Ruan, W. Xiao, X.C. Li, G.H. He, X.B. Jiang, A novel hollow fiber membrane-assisted antisolvent crystallization for enhanced mass transfer process control, AlChE. J. 65 (2) (2019) 734-744. [23] J.C.W. Fern, S. Ohsaki, S. Watano, R. Pfeffer, Continuous synthesis of nano-drug particles by antisolvent crystallization using a porous hollow-fiber membrane module, Int. J. Pharm. 543 (1-2) (2018) 139-150. [24] A. Haghighizadeh, H. Mahdavi, O. Rajabi, Continuous and size-controlled preparation of ibuprofen nanosuspension by antisolvent crystallization method using hollow fiber membrane, J. Pharm. Innov. 18 (1) (2023) 195-204. [25] A. Haghighizadeh, H. Mahdavi, O. Rajabi, Recent progress in antisolvent crystallization of pharmaceuticals with a focus on the membrane-based technologies, Chem. Eng. Technol. 47 (5) (2024) 750-763. [26] Y.C. Niu, S.F. Du, S.K. Liang, L. Sheng, Y.S. Meng, W. Xiao, X.H. Ruan, G.H. He, X.B. Jiang, Hollow fiber membrane governed microjet flow regime for confined crystallization of large-sized crystal aggregates, AlChE. J. 70 (8) (2024) e18474. [27] S. Chergaoui, D.P. Debecker, T. Leyssens, P. Luis, Key parameters impacting the crystal formation in antisolvent membrane-assisted crystallization, Membranes 13 (2) (2023) 140. [28] C. Kang, M.H. Li, S. Teng, H.X. Liu, Z.R. Chen, C.J. Li, Erosive wear caused by large solid particles carried by a flowing liquid: a comprehensive review, Processes 12 (6) (2024) 1150. [29] Z.L. Huang, Y. Shuai, C.J. Ren, Y. Yang, J.Y. Sun, J.D. Wang, Y.R. Yang, Effects of internal structures on mass transfer performance of jet bubbling reactor, Chem. Eng. Process. Process. Intensif. 175 (2022) 108936. [30] Z.H. Yang, Z. He, X.G. Zhang, Z.H. Jin, J.P. Li, Q.W. Lv, Y.L. Chang, X. Jiang, Experimental and simulation studies on gas-solid fluidized separation of biochar and catalytic carriers in fluidized bed biomass pyrolyzers, Chem. Eng. Res. Des. 215 (2025) 507-521. [31] V. Ravisankar, J. Wu, S. Bhargava, R. Parthasarathy, Studying particle attrition in a solid-liquid agitated vessel using focused beam reflectance measurement (FBRM), Chem. Eng. Process. Process. Intensif. 183 (2023) 109256. [32] S.G. Agrawal, A. Balandier, A.H.J. Paterson, J.R. Jones, Study on lactose attrition inside the mixing cell of a laser diffraction particle sizer using a novel attrition index, Powder Technol. 208 (3) (2011) 669-675. [33] A. Uzi, A. Levy, Flow characteristics of coarse particles in horizontal hydraulic conveying, Powder Technol. 326 (2018) 302-321. [34] K. Madane, V.V. Ranade, Anti-solvent crystallization: Particle size distribution with different devices, Chem. Eng. J. 446 (2022) 137235. [35] S. Datta, D.J.W. Grant, Effect of supersaturation on the crystallization of phenylbutazone polymorphs, Cryst. Res. Technol. 40 (3) (2005) 233-242. [36] D.Y. Chen, B. Wang, K.K. Sirkar, Hydrodynamic modeling of porous hollow fiber anti-solvent crystallizer for continuous production of drug crystals, J. Membr. Sci. 556 (2018) 185-195. [37] P. Liu, L. Yang, Y.X. Ma, Y. Zhang, H.L. Wang, J.C. Cheng, C. Yang, Continuous antisolvent crystallization of L-histidine: impact of process parameters and kinetic estimation, Ind. Eng. Chem. Res. 63 (6) (2024) 2831-2841. [38] J. Li, L. Sheng, L.H. Tuo, W. Xiao, X.H. Ruan, X.M. Yan, G.H. He, X.B. Jiang, Membrane-assisted antisolvent crystallization: interfacial mass-transfer simulation and multistage process control, Ind. Eng. Chem. Res. 59 (21) (2020) 10160-10171. |