[1] J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Impermeable atomic membranes from graphene sheets, Nano Lett. 8 (8) (2008) 2458-2462. [2] O. Leenaerts, B. Partoens, F.M. Peeters, Graphene: a perfect nanoballoon, Appl. Phys. Lett. 93 (19) (2008) 193107. [3] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 335 (6067) (2012) 442-444. [4] Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater. 23 (29) (2013) 3693-3700. [5] H. Chen, M.B. Muller, K.J. Gilmore, G.G.Wallace, D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper, Adv. Mater. 20 (18) (2008) 3557-3562. [6] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G.Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3 (2) (2008) 101-105. [7] Analytica Chimica Acta Advanced Materials. W. Xiong, J.Z. Liu, M. Ma, Z. Xu, J. Sheridan, Q. Zheng, Strain engineering water transport in graphene nanochannels, Phys. Rev. E 84 (5) (2011) (056329). [8] R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science 343 (6172) (2014) 752-754. [9] B. Mi, Graphene oxide membranes for ionic and molecular sieving, Science 343 (6172) (2014) 740-742. [10] R.J. Mashl, S. Joseph, N.R. Aluru, E. Jakobsson, Anomalously immobilized water: a new water phase induced by confinement in nanotubes, Nano Lett. 3 (5) (2003) 589-592. [11] L.Wang, R.S. Dumont, J.M. Dickson, Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure, J. Chem. Phys. 137 (4) (2012) 044102. [12] J.H. Walther, K. Ritos, E.R. Cruz-Chu, C.M. Megaridis, P. Koumoutsakos, Barriers to superfast water transport in carbon nanotube membranes, Nano Lett. 13 (5) (2013) 1910-1914. [13] H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91 (24) (1987) 6269-6271. [14] A. Cheng,W.A. Steele, Computer simulation of ammonia on graphite. I. Low temperature structure of monolayer and bilayer films, J. Chem. Phys. 92 (6) (1990) 3858-3866. [15] P. Hirunsit, P.B. Balbuena, Effects of confinement onwater structure and dynamics: a molecular simulation study, J. Phys. Chem. C 111 (4) (2007) 1709-1715. [16] M.F. Craciun, S. Russo, M. Yamamoto, J.B. Oostinga, A.F. Morpurgo, S. Tarucha, Trilayer graphene is a semimetalwith a gate-tunable band overlap, Nat. Nanotechnol. 4 (6) (2009) 383-388. [17] D. Argyris, N.R. Tummala, A. Striolo, D.R. Cole, Molecular structure and dynamics in thin water films at the silica and graphite surfaces, J. Phys. Chem. C 112 (35) (2008) 13587-13599. [18] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1-19. [19] S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81 (1) (1984) 511-519. [20] W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A 31 (3) (1985) 1695-1697. [21] J.A. Thomas, A.J.H. McGaughey, Reassessing fast water transport through carbon nanotubes, Nano Lett. 8 (9) (2008) 2788-2793. [22] J.K. Holt, H.G. Park, Y.M.Wang,M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312 (5776) (2006) 1034-1037. [23] K. Falk, F. Sedlmeier, L. Joly, R.R. Netz, L.R. Bocquet, Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction, Nano Lett. 10 (10) (2010) 4067-4073. [24] J.A. Thomas, A.J.H. McGaughey, Water flow in carbon nanotubes: transition to subcontinuum transport, Phys. Rev. Lett. 102 (18) (2009) 184502. [25] X. Qin, Q. Yuan, Y. Zhao, S. Xie, Z. Liu, Measurement of the rate ofwater translocation through carbon nanotubes, Nano Lett. 11 (5) (2011) 2173-2177. [26] F. Du, L. Qu, Z. Xia, L. Feng, L. Dai,Membranes of vertically aligned superlong carbon nanotubes, Langmuir 27 (13) (2011) 8437-8443. [27] J. Zheng, E.M. Lennon, H.-K. Tsao, Y.-J. Sheng, S. Jiang, Transport of a liquidwater and methanol mixture through carbon nanotubes under a chemical potential gradient, J. Chem. Phys. 122 (21) (2005) 214702. [28] J.K. Holt, A. Noy, T. Huser, D. Eaglesham, O. Bakajin, Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport, Nano Lett. 4 (11) (2004) 2245-2250. [29] T.Werder, J.H. Walther, R.L. Jaffe, T.Halicioglu, P. Koumoutsakos, On thewater-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes, J. Phys. Chem. B 107 (6) (2003) 1345-1352. [30] G. Hummer, J.C. Rasaiah, J.P. Noworyta,Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414 (6860) (2001) 188-190. [31] L.J. Tang, X.N. Yang, Molecular dynamics simulation of C60 encapsulation into single-walled carbon nanotube in solvent conditions, J. Phys. Chem. C 116 (21) (2012) 11783-11791. [32] N. Wei, X. Peng, Z. Xu, Breakdown of fast water transport in graphene oxides, Phys. Rev. E 89 (1) (2014) 012113. [33] M.C. Gordillo, J. Martí, High temperature behavior of water inside flat graphite nanochannels, Phys. Rev. B 75 (8) (2007) 085406. [34] H. Mosaddeghi, S. Alavi, M.H. Kowsari, B. Najafi, Simulations of structural and dynamic anisotropy in nano-confined water between parallel graphite plates, J. Chem. Phys. 137 (18) (2012) 184703. [35] T. Tassaing,M.-C. Bellissent-Funel, The dynamics of supercritical water: a quasielastic incoherent neutron scattering study, J. Chem. Phys. 113 (8) (2000) 3332-3337. [36] H. Liu, G. Cao, Effects of impact velocity on pressure-driven nanofluid, J. Chem. Phys. 139 (11) (2013) 114701. [37] F.H. Stillinger, Water revisited, Science 209 (1980) 451-457. [38] M.C. Gordillo, J.Martí, Molecular dynamics description of a layer of watermolecules on a hydrophobic surface, J. Chem. Phys. 117 (7) (2002) 3425-3430. [39] G. Cicero, J.C. Grossman, E. Schwegler, F. Gygi, G. Galli,Water confined in nanotubes and between graphene sheets: A first principle study, J. Am. Chem. Soc. 130 (6) (2008) 1871-1878. [40] Q. Du, E. Freysz, Y.R. Shen, Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity, Science 264 (5160) (1994) 826-828. [41] D.C. Rapaport, Hydrogen-bonds in water network organization and lifetimes, Mol. Phys. 50 (5) (1983) 1151-1162. [42] F.H. Stillinger, Theory and molecular models for water, Adv. Chem. Phys. 31 (1975) 1-101. |