[1] M.A. Shanon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature 452 (2008) 301-310.[2] B.R. Stern, M. Solioz, D. Krewski, P. Aggett, T. Aw, S. Baker, K. Crump, M. Dourson, L. Haber, R. Hertzber, C. Keen, B. Mee, L. Rudenk, R. Schoeny, W. Slob, T. Starr, Copper and human health: biochemistry, genetics and strategies for modeling doseresponse relationships, J. Toxicol. Environ. Health 10 (2007) 157-222.[3] S. Vasudevan, J. Lakshimi, G. Sozhan, Simultaneous removal of Co, Cu, and Cr from water by electrocoagulation, Toxicol. Environ. Chem. 94 (2012) 1930-1940.[4] S. Vasudevan,M.A. Oturan, Electrochemistry: as cause and cure inwater pollution—an overview, Environ. Chem. Lett. 12 (2014) 97-108.[5] H. Eccles, Ion exchange—future challenges/opportunities in environmental cleanup, Proceedings of the Ion-Ex '95 Conference: Progress in Ion Exchange—Advances and Applications 1995, pp. 245-259.[6] S. Vasudevan, J. Lakshmi, R. Kamaraj, G. Sozhan, A critical study on the removal of copper by an electrochemically assisted coagulation: Equilibrium, kinetics, and thermodynamics, Asia Pac. J. Chem. Eng. 8 (1) (2013) 162-171.[7] G. McKay, Peat for environmental applications: A review, Dev. Chem. Eng. Miner. Process. 4 (1996) 127-156.[8] Y.S. Ho, G. McKay, Competitive sorption of copper and nickel ions aqueous solution using peat, Adsorption 5 (1999) 409-417.[9] Y.S. Ho, G. McKay, Sorption of copper (II) from aqueous solution by peat, Water Air Soil Pollut. 158 (2004) 77-97.[10] H. Esfandian, H. Javadian, M. Parvini, B. Khoshandam, R. Katal, Batch and column removal of copper by modified brown algae Sargassum bevanom from aqueous solution, Asia Pac. J. Chem. Eng. 8 (5) (2013) 665-678.[11] C.W. Cheung, C.K. Chan, J.F. Porter, G. McKay, Combined diffusion model for the sorption of cadmium, copper, and zinc ions onto bone char, Environ. Sci. Technol. 35 (2001) 1511-1522.[12] W.H. Cheung, J.C.Y. Ng, G. McKay, Kinetic analysis of the sorption of copper (II) ions of chitosan, Chem. Technol. Biotechnol. 78 (2003) 562-571.[13] M. Qureshi, K.G. Varshney, Inorganic ion Exchangers in Chemical Analysis, CRC Press, Inc., 1991. 15-23.[14] R. Kunin, Ion Exchange Resins, 2nd edition Robert E. Krieger Publishing Company, Inc., Malabar, Florida, 1985. 1-16.[15] S.D. Alexandratos, Ion-exchange resins: A retrospective from industrial and engineering chemistry research, Ind. Eng. Chem. Res. 48 (2009) 388-398.[16] C. Xiong, C. Yao, L. Wang, J. Ke, Adsorption behaviour of Cd(II) from aqueous solutions onto gel-type weak acid resin, Hydrometallurgy 98 (2009) 318-324.[17] T. Furusawa, J.M. Smith, Fluid particle and intraparticle mass transport rates in slurries, Ind. Eng. Chem. Fundam. 12 (1973) 197-203.[18] T.H. Shek, Anthony Ma, Vinci, K.C. Lee, G. McKay, Kinetics of zinc ions removal from effluents using ion exchange resin, J. Chem. Eng 146 (2009) 63-70.[19] I. Langmuir, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361-1403.[20] H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57 (1906) 385-470.[21] R. Sips, On the structure of a catalyst surface, J. Chem. Phys. 16 (1948) 490-495.[22] L. Jossens, J.M. Prausnitz, W. Fritz, E.U. Schlunder, A.L. Myers, Thermodynamics of multi-solute adsorption from dilute aqueous solutions, Chem. Eng. Sci. 33 (1978) 1097-1104.[23] M.M. Dubinin, L.V. Radushkevich, The equation of the characteristic curve of activated charcoal, Dokl. Akad. Nauk SSSR 55 (1947) 327-329.[24] M.J. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochim. 12 (1940) 217-222.[25] J. Toth, Adsorption an festen oberflächen inhomogener aktivität, I. Acta Chim. Hung. 30 (1962) 415-430.[26] G. McKay, J.F. Porter, Equilibrium parameters for the sorption of copper, cadmium and zinc ions onto peat, J. Chem. Technol. Biotechnol. 69 (3) (1997) 309-320.[27] G. McKay, B. Vong, J.F. Porter, Isotherm studies for the sorption of metal ions on to peat, Adsorpt. Sci. Technol. 16 (1) (1998) 51-66.[28] C.W. Cheung, J.F. Porter, G. McKay, Sorption kinetics for the removal of copper and zinc from effluents using bone char, Sep. Purif. Technol. 19 (1) (2000) 55-64.[29] C.W. Cheung, J.F. Porter, G. McKay, Removal of Cu (II) and Zn (II) ions by sorption onto bone char using batch agitation, Langmuir 18 (2002) 650-656.[30] S. Veli, B. Pekey, Removal of copper from aqueous solution by ion exchange resins, Fresenius Environ. Bull. 13 (3B) (2004) 244-250.[31] A. Demirbas, E. Pehlivan, F. Gode, T. Altun, G. Arslan, Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin, J. Colloid Interface Sci. 282 (1) (2005) 20-25.[32] G.E. Boyd, A.W. Adamson, L.S.Myers Jr., The exchange adsorption of ions fromaqueous solutions by organic zeolites. II. Kinetics, J. Am. Chem. Soc. 69 (1947) 2836-2848.[33] S. Lagergren, About the theory of so-called adsorption of soluble substances, K. Sven. Vetensk. Akad. Handl. 24 (4) (1898) 1-39.[34] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (1999) 451-465.[35] Y.S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res. 34 (2000) 735-742.[36] C. Aharoni,M. Ungarish, Kinetics of activated chemisorption. Part 1. The non-Elovich part of the isotherm, J. Chem. Soc. Faraday Trans. 72 (1976) 400-408.[37] D.L. Sparks, Kinetics of reaction in pure and mixed systems, in: D.L. Sparks (Ed.), Soil Physical Chemistry, CRC Press, Boca Raton, Florida 1986, pp. 83-145.[38] M.J.D. Low, Kinetics of chemisorption of gases on solids, Chem. Rev. 60 (1960) 267-312.[39] A.G. Ritchie, Alternative to the Elovich equation for the kinetics of adsorption of gases on solids, J. Chem. Soc. Faraday Trans. 73 (1977) 1650-1653. |