Chinese Journal of Chemical Engineering ›› 2016, Vol. 24 ›› Issue (1): 31-38.DOI: 10.1016/j.cjche.2015.07.003
Yan Fu1, Jinjin Yang1, Jinli Zhang1,2, Wei Li1
收稿日期:
2014-10-30
修回日期:
2015-05-12
出版日期:
2016-01-28
发布日期:
2016-02-23
通讯作者:
Wei Li
基金资助:
Supported by the National Natural Science Foundation of China (21206107), the National High-tech R&D Program of China (2012AA03A609), and Program for Changjiang Scholars and Innovative Research Team in University (IRT1161).
Yan Fu1, Jinjin Yang1, Jinli Zhang1,2, Wei Li1
Received:
2014-10-30
Revised:
2015-05-12
Online:
2016-01-28
Published:
2016-02-23
Contact:
Wei Li
Supported by:
Supported by the National Natural Science Foundation of China (21206107), the National High-tech R&D Program of China (2012AA03A609), and Program for Changjiang Scholars and Innovative Research Team in University (IRT1161).
摘要: Biomacromolecules including protein and nucleic acids are considered as promising chiral selectors in the fields of enantioselective separation, owing to their inherent chirality, polymorphous structures, stable physicochemical properties, good biocompatibility as well as susceptible modification and regulation. In this review, firstly, enantioselective recognition mechanismof proteins and nucleic acids toward different enantiomers is discussed, as well as their potential applications on the chiral separation of racemic compounds. Secondly, preparative enantioseparation adopting biomolecule-modified hybrid materials including porous microspheres, magnetic nanoparticles and affinity membranes, are introduced respectively. Finally, novel chiroptical materials constructed on the basis of chiral induction, transfer, amplification and transcription, are recognized as promising candidates in future applications.
Yan Fu, Jinjin Yang, Jinli Zhang, Wei Li. Bio-inspired enantioseparation for chiral compounds[J]. Chinese Journal of Chemical Engineering, 2016, 24(1): 31-38.
Yan Fu, Jinjin Yang, Jinli Zhang, Wei Li. Bio-inspired enantioseparation for chiral compounds[J]. Chin.J.Chem.Eng., 2016, 24(1): 31-38.
[1] A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.M. Roller, A. Högele, F.C. Simmel, A.O. Govorov, T. Liedl, DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response, Nature 483 (2012) 311-314.[2] B. Liu, L. Han, S. Che, Formation of enantiomeric impeller-like helical architectures by DNA self-assembly and silica mineralization, Angew. Chem. Int. Ed. 51 (2012) 923-927.[3] C.Wang, G. Jia, J. Zhou, Y. Li, Y. Liu, S. Lu, C. Li, Enantioselective Diels-Alder reactions with G-quadruplex DNA-based catalysts, Angew. Chem. Int. Ed. 51 (2012) 9352-9355.[4] L. Feng, C. Zhao, Y. Xiao, L. Wu, J. Ren, X. Qu, Electrochemical DNA three-way junction based sensor for distinguishing chiral metallo-supramolecular complexes, Chem. Commun. 48 (2012) 6900-6902.[5] T.J.Ward, K.D.Ward, Chiral separations: a review of current topics and trends, Anal. Chem. 84 (2011) 626-635.[6] C. Ma, X.L. Xu, P. Ai, S.M. Xie, Y.C. Lv, H.Q. Shan, L.M. Yuan, Chiral separation of D, Lmandelic acid through cellulose membranes, Chirality 23 (2011) 379-382.[7] K. Petruševska-Seebach, A. Seidel-Morgenstern, M.P. Elsner, Preferential crystallization of L-asparagine in water, Cryst. Growth Des. 11 (2011) 2149-2163.[8] K. Tang, P. Zhang, C. Pan, H. Li, Equilibrium studies on enantioselective extraction of oxybutynin enantiomers by hydrophilic β-cyclodextrin derivatives, AIChE J. 57 (2011) 3027-3036.[9] P. Tufvesson, J. Lima-Ramos, J.S. Jensen, N. Al-Haque,W. Neto, J.M.Woodley, Process considerations for the asymmetric synthesis of chiral amines using transaminases, Biotechnol. Bioeng. 108 (2011) 1479-1493.[10] K. Würges, K. Petruševska-Seebach, M.P. Elsner, S. Lütz, Enzyme-assisted physicochemical enantioseparation processes—part III: overcoming yield limitations by dynamic kinetic resolution of asparagine via preferential crystallization and enzymatic racemization, Biotechnol. Bioeng. 104 (2009) 1235-1239.[11] N.M. Maier, P. Franco, W. Lindner, Separation of enantiomers: needs, challenges, perspectives, J. Chromatogr. A 906 (2001) 3-33.[12] A. Berthod, Chiral recognition mechanisms, Anal. Chem. 78 (2006) 2093-2099.[13] M. Michaud, E. Jourdan, A. Villet, A. Ravel, C. Grosset, E. Peyrin, A DNA aptamer as a new target-specific chiral selector for HPLC, J. Am. Chem. Soc. 125 (2003) 8672-8679.[14] M.M. Wanderley, C. Wang, C.-D. Wu, W. Lin, A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols, J. Am. Chem. Soc. 134 (2012) 9050-9053.[15] T. Liu, Y. Liu, W. Xuan, Y. Cui, Chiral nanoscale metal-organic tetrahedral cages: Diastereoselective self-assembly and enantioselective separation, Angew. Chem. 122 (2010) 4215-4218.[16] P. Li, Y. He, J. Guang, L.Weng, J.C.-G. Zhao, S. Xiang, B. Chen, A homochiral microporous hydrogen-bonded organic framework for highly enantioselective separation of secondary alcohols, J. Am. Chem. Soc. 136 (2014) 547-549.[17] A. Shundo, K. Hori, T. Ikeda, N. Kimizuka, K. Tanaka, Design of a dynamic polymer interface for chiral discrimination, J. Am. Chem. Soc. 135 (2013) 10282-10285.[18] K. Huang, X. Dong, R. Ren, W. Jin, Fabrication of homochiral metal-organic framework membrane for enantioseparation of racemic diols, AIChE J. 59 (2013) 4364-4372.[19] T. Eralp, A. Ievins, A. Shavorskiy, S.J. Jenkins, G. Held, The importance of attractive three-point interaction in enantioselective surface chemistry: Stereospecific adsorption of serine on the intrinsically chiral Cu {531} surface, J. Am. Chem. Soc. 134 (2012) 9615-9621.[20] Y. Yun, A.J. Gellman, Enantioselective separation on naturally chiral metal surfaces: D,L-aspartic acid on Cu (3, 1, 17) R&S surfaces, Angew. Chem. Int. Ed. 52 (2013) 3394-3397.[21] T.S. van Erp, T.P. Caremans, D. Dubbeldam, A. Martin-Calvo, S. Calero, J.A. Martens, Enantioselective adsorption in achiral zeolites, Angew. Chem. 122 (2010) 3074-3077.[22] A.Martin-Calvo, S. Calero, J.A.Martens, T.S. van Erp, Adsorption of polar enantiomers in achiral zeolites, J. Phys. Chem. C 117 (2013) 1524-1530.[23] C. Yamamoto, E. Yashima, Y. Okamoto, Structural analysis of amylose tris (3, 5-dimethylphenylcarbamate) by NMR relevant to its chiral recognition mechanism in HPLC, J. Am. Chem. Soc. 124 (2002) 12583-12589.[24] S. Ma, S. Shen, H. Lee, M. Eriksson, X. Zeng, J. Xu, K. Fandrick, N. Yee, C. Senanayake, N. Grinberg, Mechanistic studies on the chiral recognition of polysaccharide-based chiral stationary phases using liquid chromatography and vibrational circular dichroism: reversal of elution order of N-substituted alpha-methyl phenylalanine esters, J. Chromatogr. A 1216 (2009) 3784-3793.[25] R.B. Kasat, E.I. Franses, N.H.L. Wang, Experimental and computational studies of enantioseparation of structurally similar chiral compounds on amylose tris (3, 5- dimethylphenylcarbamate), Chirality 22 (2010) 565-579.[26] T. Ikai, Y. Okamoto, Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography, Chem. Rev. 109 (2009) 6077-6101.[27] J. Ståhlberg, H. Henriksson, C. Divne, R. Isaksson, G. Pettersson, G. Johansson, T.A. Jones, Structural basis for enantiomer binding and separation of a common β-blocker: crystal structure of cellobiohydrolase Cel7A with bound (S)-propranolol at 1.9 Å resolution, J. Mol. Biol. 305 (2001) 79-93.[28] L. Zhang, M. Song, Q. Tian, S. Min, Chiral separation of L,D-tyrosine and L,Dtryptophan by ct DNA, Sep. Purif. Technol. 55 (2007) 388-391.[29] W. Li, Y. Li, Y. Fu, J. Zhang, Enantioseparation of chiral ofloxacin using biomacromolecules, Korean J. Chem. Eng. 30 (2013) 1448-1453.[30] J. Haginaka, Enantiomer separation of drugs by capillary electrophoresis using proteins as chiral selectors, J. Chromatogr. A 875 (2000) 235-254.[31] J. Haginaka, Protein-based chiral stationary phases for high-performance liquid chromatography enantioseparations, J. Chromatogr. A 906 (2001) 253-273.[32] M. Lämmerhofer, Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases, J. Chromatogr. A 1217 (2010) 814-856.[33] V.T.G. Chuang,M. Otagiri, Stereoselective binding of human serumalbumin, Chirality 18 (2006) 159-166.[34] C. Bertucci, A. Canepa, G.A. Ascoli, L.F.L. Guimaraes, G. Felix, Site I on human albumin: Differences in the binding of (R)-and (S)-warfarin, Chirality 11 (1999) 675-679.[35] T. Itoh, Y. Saura, Y. Tsuda, H. Yamada, Stereoselectivity and enantiomer-enantiomer interactions in the binding of ibuprofen to human serumalbumin, Chirality 9 (1997) 643-649.[36] H. Hödl, J. Koidl, M.G. Schmid, G. Gübitz, Chiral resolution of tryptophan derivatives by CE using canine serum albumin and bovine serum albumin as chiral selectors, Electrophoresis 27 (2006) 4755-4762.[37] I. Petitpas, A.A. Bhattacharya, S. Twine, M. East, S. Curry, Crystal structure analysis of warfarin binding to human serum albumin anatomy of drug site I, J. Biol. Chem. 276 (2001) 22804-22809.[38] F. Edwie, Y. Li, T.-S. Chung, Exploration of regeneration and reusability of human serum albumin as a stereoselective ligand for chiral separation in affinity ultrafiltration, J. Membr. Sci. 362 (2010) 501-508.[39] H. Wang, Y. Li, T.S. Chung, A fine match between the stereoselective ligands and membrane pore size for enhanced chiral separation, AIChE J. 55 (2009) 2284-2291.[40] Z. Zhou, Y. Xiao, T.A. Hatton, T.S. Chung, Novelmembrane processes for the enantiomeric resolution of tryptophan by selective permeation enhancements, AIChE J. 57 (2011) 1154-1162.[41] M. Ravikumar, S. Prabhakar, M. Vairamani, Chiral discrimination of α-amino acids by the DNA triplet GCA, Chem. Commun. (2007) 392-394.[42] J. Malina, O. Novakova, M. Vojtiskova, G. Natile, V. Brabec, Conformation of DNA GG intrastrand cross-link of antitumor oxaliplatin and its enantiomeric analog, Biophys. J. 93 (2007) 3950-3962.[43] M. Michaud, E. Jourdan, C. Ravelet, A. Villet, A. Ravel, C. Grosset, E. Peyrin, Immobilized DNA aptamers as target-specific chiral stationary phases for resolution of nucleoside and amino acid derivative enantiomers, Anal. Chem. 76 (2004) 1015-1020.[44] C. Ravelet, R. Boulkedid, A. Ravel, C. Grosset, A. Villet, J. Fize, E. Peyrin, A L-RNA aptamer chiral stationary phase for the resolution of target and related compounds, J. Chromatogr. A 1076 (2005) 62-70.[45] P.-H. Lin, S.-J. Tong, S.R. Louis, Y. Chang, W.-Y. Chen, Thermodynamic basis of chiral recognition in a DNA aptamer, Phys. Chem. Chem. Phys. 11 (2009) 9744-9750.[46] Y.S. Kim, C.J. Hyun, I. Kim, M.B. Gu, Isolation and characterization of enantioselective DNA aptamers for ibuprofen, Bioorg. Med. Chem. 18 (2010) 3467-3473.[47] A. Shoji, M. Kuwahara, H. Ozaki, H. Sawai,Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivativewith high enantioselectivity, J. Am. Chem. Soc. 129 (2007) 1456-1464.[48] X. Qu, J.O. Trent, I. Fokt,W. Priebe, J.B. Chaires, Allosteric, chiral-selective drug binding to DNA, Proc. Natl. Acad. Sci. 97 (2000) 12032-12037.[49] P.P. Pellegrini, J.R. Aldrich-Wright, Evidence for chiral discrimination of ruthenium (II) polypyridyl complexes by DNA, Dalton Trans. (2003) 176-183.[50] J.G. Collins, J.R. Aldrich-Wright, I.D. Greguric, P.P. Pellegrini, Binding of the delta-and lambda-enantiomers of [Ru(dmphen)2dpq] 2+to the hexanucleotide d(GTCGAC)2, Inorg. Chem. 38 (1999) 5502-5509.[51] C. Zhao, J. Geng, L. Feng, J. Ren, X. Qu, Chiral metallo-supramolecular complexes selectively induce human telomeric G-quadruplex formation under salt-deficient conditions, Chem. Eur. J. 17 (2011) 8209-8215.[52] H. Yu, X.Wang,M. Fu, J. Ren, X. Qu, Chiral metallo-supramolecular complexes selectively recognize human telomeric G-quadruplex DNA, Nucleic Acids Res. 36 (2008) 5695-5703.[53] C. Zhao, J. Ren, J. Gregoliński, J. Lisowski, X. Qu, Contrasting enantioselective DNA preference: Chiral helical macrocyclic lanthanide complex binding to DNA, Nucleic Acids Res. 40 (2012) 8186-8196.[54] E.-J. Lee, J.-A. Yeo, K. Jung, H.J. Hwangbo, G.-J. Lee, S.K. Kim, Enantioselective binding of ofloxacin to B form DNA, Arch. Biochem. Biophys. 395 (2001) 21-24.[55] H.J. Hwangbo, B.H. Yun, J.S. Cha, D.Y. Kwon, S.K. Kim, Enantioselective binding of S -and R-ofloxacin to various synthetic polynucleotides, Eur. J. Pharm. Sci. 18 (2003) 197-203.[56] Y. Fu, X. Duan, X. Chen, J. Zhang,W. Li, Enantioselective separation of chiral ofloxacin using functional Cu (II)-coordinated G-rich oligonucleotides, RSC Adv. 4 (2014) 1329-1333.[57] Y. Fu, X. Duan, X. Chen, H. Zhang, J. Zhang, W. Li, Chiral discrimination of ofloxacin enantiomers using DNA double helix regulated by metal ions, Chirality 26 (2014) 249.[58] W. Li, X. Chen, Y. Fu, J. Zhang, Enantioselective recognition mechanism of ofloxacin via Cu (II)-modulated DNA, J. Phys. Chem. B 118 (2014) 5300-5309.[59] S.B. Lee, D.T. Mitchell, L. Trofin, T.K. Nevanen, H. Soderlund, C.R. Martin, Antibodybased bio-nanotube membranes for enantiomeric drug separations, Science 296 (2002) 2198-2200.[60] K. Singh, H. Bajaj, P. Ingole, A. Bhattacharya, Comparative study of enantioseparation of racemic tryptophan by ultrafiltration using BSA-immobilized and BSA-interpenetrating network polysulfone membranes, Sep. Sci. Technol. 45 (2010) 346-354.[61] J.K. Yong, Y. Xiao, T.-S. Chung, The facile synthesis of an aldehyde-containing graft copolymer membrane for covalent protein capture with retention of protein functionality, J. Chromatogr. A 1217 (2010) 1904-1911.[62] A. Higuchi, Y. Higuchi, K. Furuta, B.O. Yoon, M. Hara, S. Maniwa, M. Saitoh, K. Sanui, Chiral separation of phenylalanine by ultrafiltration through immobilized DNA membranes, J. Membr. Sci. 221 (2003) 207-218.[63] Y. Matsuoka, N. Kanda, Y.M. Lee, A. Higuchi, Chiral separation of phenylalanine in ultrafiltration through DNA-immobilized chitosan membranes, J. Membr. Sci. 280 (2006) 116-123.[64] A. Higuchi, A. Hayashi, N. Kanda, K. Sanui, H. Kitamura, Chiral separation of amino acids in ultrafiltration through DNA-immobilized cellulose membranes, J. Mol. Struct. 739 (2005) 145-152.[65] K. Sakai-Kato, M. Kato, H. Nakakuki, T. Toyo'oka, Investigation of structure and enantioselectivity of BSA-encapsulated sol-gel columns prepared for capillary electrochromatography, J. Pharm. Biomed. Anal. 31 (2003) 299-309.[66] X. Weng, H. Bi, B. Liu, J. Kong, On-chip chiral separation based on bovine serum albumin-conjugated carbon nanotubes as stationary phase in a microchannel, Electrophoresis 27 (2006) 3129-3135.[67] H.F. Li, H. Zeng, Z. Chen, J.M. Lin, Chip-based enantioselective open-tubular capillary electrochromatography using bovine serum albumin-gold nanoparticle conjugates as the stationary phase, Electrophoresis 30 (2009) 1022-1029.[68] R.-P. Liang, X.-N.Wang, C.-M. Liu, X.-Y. Meng, J.-D. Qiu, Facile preparation of protein stationary phase based on polydopamine/graphene oxide platform for chip-based open tubular capillary electrochromatography enantioseparation, J. Chromatogr. A 1323 (2014) 135-142.[69] M. Martínez-Gómez, J. Martínez-Pla, S. Sagrado, R. Villanueva-Camañas, M. Medina-Hernández, Chiral separation of oxprenolol by affinity electrokinetic chromatography-partial filling technique using human serum albumin as chiral selector, J. Pharm. Biomed. Anal. 39 (2005) 76-81.[70] C.-M. Liu, R.-P. Liang, X.-N. Wang, J.-W. Wang, J.-D. Qiu, A versatile polydopamine platform for facile preparation of protein stationary phase for chip-based open tubular capillary electrochromatography enantioseparation, J. Chromatogr. A 1294 (2013) 145-151.[71] Z. Zhai, Y. Chen, Y.J. Wang, G.S. Luo, Chiral separation performance of micrometersized monodispersed silica spheres with high protein loading, Chirality 21 (2009) 760-768.[72] H.J. Choi, M.H. Hyun, Separation of enantiomers with magnetic silica nanoparticles modified by a chiral selector: Enantioselective fishing, Chem. Commun. (2009) 6454-6456.[73] X. Chen, J. Rao, J.Wang, J.J. Gooding, G. Zou, Q. Zhang, A facile enantioseparation for amino acids enantiomers using β-cyclodextrins functionalized Fe3O4 nanospheres, Chem. Commun. 47 (2011) 10317-10319.[74] Y. Wang, P. Su, S. Wang, J. Wu, J. Huang, Y. Yang, Dendrimer modified magnetic nanoparticles for immobilized BSA: a novel chiral magnetic nano-selector for direct separation of racemates, J. Mater. Chem. B 1 (2013) 5028-5035.[75] Y. Fu, T. Huang, B. Chen, J. Shen, X. Duan, J. Zhang,W. Li, Enantioselective resolution of chiral drugs using BSA functionalized magnetic nanoparticles, Sep. Purif. Technol. 107 (2013) 11-18.[76] J. Ruta, S. Perrier, C. Ravelet, B. Roy, C. Perigaud, E. Peyrin, Aptamer-modified micellar electrokinetic chromatography for the enantioseparation of nucleotides, Anal. Chem. 81 (2009) 1169-1176.[77] R. Huang,W. Xiong, D.Wang, L. Guo, Z. Lin, L. Yu, K. Chu, B. Qiu, G. Chen, Label-free aptamer-based partial filling technique for enantioseparation and determination of DL-tryptophan with micellar electrokinetic chromatography, Electrophoresis 34 (2013) 254-259.[78] R. Huang, D. Wang, S. Liu, L. Guo, F. Wang, Z. Lin, B. Qiu, G. Chen, Preparative separation of enantiomers based on functional nucleic acids modified gold nanoparticles, Chirality 25 (2013) 751-756.[79] Q. Jin, L. Zhang, X. Zhu, P. Duan, M. Liu, Amphiphilic Schiff base organogels: Metal-ionmediated chiral twists and chiral recognition, Chem. Eur. J. 18 (2012) 4916-4922.[80] H. Jintoku, M. Takafuji, R. Oda, H. Ihara, Enantioselective recognition by a highly ordered porphyrin-assembly on a chiral molecular gel, Chem. Commun. 48 (2012) 4881-4883.[81] W. Miao, L. Zhang, X. Wang, H. Cao, Q. Jin, M. Liu, A dual-functional metallogel of amphiphilic copper(II) quinolinol: Redox responsiveness and enantioselectivity, Chem. Eur. J. 19 (2013) 3029-3036.[82] W. Xuan, M. Zhang, Y. Liu, Z. Chen, Y. Cui, A chiral quadruple-stranded helicate cage for enantioselective recognition and separation, J. Am. Chem. Soc. 134 (2012) 6904-6907.[83] W.Wang, X. Dong, J. Nan,W. Jin, Z. Hu, Y. Chen, J. Jiang, A homochiralmetal-organic framework membrane for enantioselective separation, Chem. Commun. 48 (2012) 7022-7024.[84] P. Paik, A. Gedanken, Y. Mastai, Chiral-mesoporous-polypyrrole nanoparticles: Its chiral recognition abilities and use in enantioselective separation, J. Mater. Chem. 20 (2010) 4085-4093.[85] C. Casado, J. Castán, I. Gracia, M. Yus, A.Mayoral, V. Sebastián, P. López-Ram-de-Viu, S. Uriel, J. Coronas, L-and D-proline adsorption by chiral ordered mesoporous silica, Langmuir 28 (2012) 6638-6644.[86] S. Fireman-Shoresh, S. Marx, D. Avnir, Enantioselective sol-gel materials obtained by either doping or imprinting with a chiral surfactant, Adv. Mater. 19 (2007) 2145-2150.[87] W. Liu,Z.Zhu,K.Deng, Z.Li,Y.Zhou,H. Qiu, Y.Gao, S. Che, Z.Tang,Goldnanorod@chiral mesoporous silica core-shell nanoparticles with unique optical properties, J. Am. Chem. Soc. 135 (2013) 9659-9664.[88] J.H. Jung, S.-J. Moon, J. Ahn, J. Jaworski, S. Shinkai, Controlled supramolecular assembly of helical silica nanotube-graphene hybrids for chiral transcription and separation, ACS Nano 7 (2013) 2595-2601.[89] J. Ren, J.Wang, J. Wang, E.Wang, Colorimetric enantiorecognition of oligopeptide and logic gate construction based on DNA aptamer-ligand-gold nanoparticle interactions, Chem. Eur. J. 19 (2013) 479-483.[90] X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. Favier Garcia de Abajo, N. Liu, B. Ding, Three-dimensional plasmonic chiral tetramers assembled by DNA origami, Nano Lett. 13 (2013) 2128-2133.[91] B. Liu, Y. Cao, Y. Duan, S. Che, Water-dependent optical activity inversion of chiral DNA-silica assemblies, Chem. Eur. J. 19 (2013) 16382-16388.[92] L.A. Yatsunyk, O. Mendoza, J.-L. Mergny, "Nano-oddities": Unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices, Acc. Chem. Res. 47 (2014) 1836-1844.[93] J. Choi, T. Majima, Conformational changes of non-B DNA, Chem. Soc. Rev. 40 (2011) 5893-5909.[94] A. D'Urso, A. Mammana, M. Balaz, A.E. Holmes, N. Berova, R. Lauceri, R. Purrello, Interactions of a tetraanionic porphyrinwithDNA: Froma Z-DNA sensor to a versatile supramolecular device, J. Am. Chem. Soc. 131 (2009) 2046-2047. |
[1] | Chaoqun Wu, Xun Liu, Fujun Yao, Xin Yang, Yan Wang, Wenyuan Hu. Crystalline-magnetism action in biomimetic mineralization of calcium carbonate[J]. 中国化学工程学报, 2023, 59(7): 146-152. |
[2] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments[J]. 中国化学工程学报, 2023, 57(5): 63-71. |
[3] | Suhang Xun, Cancan Wu, Lida Tang, Mengmeng Yuan, Haofeng Chen, Minqiang He, Wenshuai Zhu, Huaming Li. One-pot in-situ synthesis of coralloid supported VO2 catalyst for intensified aerobic oxidative desulfurization[J]. 中国化学工程学报, 2023, 56(4): 136-140. |
[4] | Fufeng Liu, Luying Jiang, Jingcheng Sang, Fuping Lu, Li Li. Molecular basis of cross-interactions between Aβ and Tau protofibrils probed by molecular simulations[J]. 中国化学工程学报, 2023, 55(3): 173-180. |
[5] | Yu Kiat Lin, Yan-Na Sun, Yu Fan, Hui Yi Leong, Dong-Qiang Lin, Shan-Jing Yao. UV/Vis-based process analytical technology to improve monoclonal antibody and host cell protein separation[J]. 中国化学工程学报, 2023, 55(3): 230-235. |
[6] | Xueqing Chen, Weiqun Gao, Yan Sun, Xiaoyan Dong. Multiple effects of polydopamine nanoparticles on Cu2+-mediated Alzheimer's β-amyloid aggregation[J]. 中国化学工程学报, 2023, 54(2): 144-152. |
[7] | Yi Shen, Xinshuang Chu, Qinghong Shi. Unraveling structure and performance of protein a ligands at liquid–solid interfaces: A multi-techniques analysis[J]. 中国化学工程学报, 2023, 54(2): 232-239. |
[8] | Dahai Jiang, Zhidi Min, Jing Leng, Huanqing Niu, Yong Chen, Dong Liu, Chenjie Zhu, Ming Li, Wei Zhuang, Hanjie Ying. Characterization of two halophilic adenylate cyclases from Thermobifida halotolerans and Haloactinopolyspora alba[J]. 中国化学工程学报, 2023, 53(1): 56-62. |
[9] | Yang Liu, Qiu Han, Guiliang Li, Haibo Lin, Fu Liu, Gang Deng, Dingfeng Lv, Weijie Sun. Purifying chylous plasma by precluding triglyceride via carboxylated polyethersulfone microfiltration membrane[J]. 中国化学工程学报, 2022, 49(9): 130-139. |
[10] | Fenfen You, Qing-Hong Shi. In situ investigation of lysozyme adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation[J]. 中国化学工程学报, 2022, 48(8): 106-115. |
[11] | Wei Liu, Xueting Sun, Xiaoyan Dong, Yan Sun. Chiral LVFFARK enantioselectively inhibits amyloid-β protein fibrillogenesis[J]. 中国化学工程学报, 2022, 48(8): 227-235. |
[12] | Yaling Li, Hao Ai, Liangzhi Qiao, Yinghong Wang, Kaifeng Du. Fabrication and characterization of hierarchical porous Ni2+ doped hydroxyapatite microspheres and their enhanced protein adsorption capacity[J]. 中国化学工程学报, 2022, 45(5): 238-247. |
[13] | Yue Liang, Wenjuan Wang, Yan Sun, Xiaoyan Dong. Insights into the cross-amyloid aggregation of Aβ40 and its N-terminal truncated peptide Aβ11-40 affected by epigallocatechin gallate[J]. 中国化学工程学报, 2022, 45(5): 284-293. |
[14] | Qingxia Xiong, Ying Ren, Yufei Xia, Guanghui Ma, Reiji Noda, Wei Ge. Molecular dynamics simulations of ovalbumin adsorption at squalene/water interface[J]. 中国化学工程学报, 2022, 50(10): 369-378. |
[15] | Saboura Ashkevarian, Jalil Badraghi, Fatemeh Mamashli, Behdad Delavari, Ali Akbar Saboury. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production[J]. 中国化学工程学报, 2021, 37(9): 128-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||