[1] V.D. Spasojevic, S.P. Serbanvic, B.D. Djordjevic, M.L. Kijevcanin, Densities, viscosities and refractive indices of aqueous alkanolamine solutions as potential carbon dioxide removal reagents, J. Chem. Eng. Data 58 (2013) 84-92.[2] M.S. Shaikh, A.M. Shariff, M.A. Bustam, G. Murshid, Physical properties of aqueous blends of sodium glycinate (SG) and piperazine (PZ) as a solvent for CO2 capture, J. Chem. Eng. Data 58 (2013) 634-638.[3] A.B. Rao, E.S. Rubin, A technical, economic and environmental assessment of aminebased CO2 capture technology for power plant greenhouse gas control, Environ. Sci. Technol. 36 (2002) 4467-4475.[4] Y. Zhao, X. Zhang, S. Zeng, Q. Zhou, H. Dong, X. Tian, S. Zhang, Density, viscosity and performances of carbon dioxide capture in 16 absorbents of amine + ionic liquid + H2O, ionic liquid + H2O and amine + H2O systems, J. Chem. Eng. Data 55 (2010) 3513-3519.[5] K. Damen, W. Turkenburg, Pathways towards large-scale implementation of CO2 capture and storage: a case study for the Netherlands, Int. J. Greenhouse Gas Control 3 (2009) 217-236.[6] H. Yang, Z. Xu,M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I.Wright, Progress in carbon dioxide separation and capture: a review, J. Environ. Sci. 20 (2008) 14-27.[7] K. Simsons, K. Nijmeijer, H. Mengers, W. Brilman, M. Wessling, Highly selective amino acid salt solutions as absorption liquid for CO2 capture in gas-liquid membrane, Chem. Sustain. 3 (2010) 939-947.[8] S. Park, B.O. Choi, J. Lee, Absorption of carbon dioxide into aqueous PAA solution containing diethanolamine, J. Chin. Inst. Chem. Eng. 38 (2007) 461-466.[9] S. Bishnoi, G.T. Rochelle, Absorption of carbon dioxide in aqueous piperazine/ methyldiethanolamine, AICHE J. 48 (2002) 2788-2799.[10] M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Post-combustion CO2 capture with chemical absorption: a state-of-art review, Chem. Eng. Res. Des. 89 (2011) 1609-1624.[11] A. Aboudheir, W. ElMoudir, Performance of formulated solvent in handling of enriched CO2 flue gas stream, Energy Procedia 1 (2009) 195-204.[12] K. Simons, W. Brilman, H. Mengers, K. Nijmeijer, M. Wessling, Kinetics of CO2 absorption in aqueous sarcosine salt solutions: influence of concentration, temperature, and CO2 loading, Ind. Eng. Chem. Res. 49 (2010) 9693-9702.[13] D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for newmaterials, Angew. Chem. Int. Ed. 49 (2010) 6058-6082.[14] M.K. Mondal, Absorption of carbon dioxide into a mixed aqueous solution of diethanolamine and piperazine, Indian J. Chem. Technol. 17 (2010) 431-435.[15] D. Speyer, V. Ermatchkov, G. Maurer, Solubility of carbon dioxide in aqueous solutions of N-methyldiethanolamine and piperazine in the low gas loading region, J. Chem. Eng. Data 55 (2009) 238-290.[16] S. Van Loo, E.P. Van Elk, G.F. Versteeg, The removal of carbon dioxide with activated solutions of methyl-diethanol-amine, J. Petrol. Sci. Eng. 55 (2007) 135-145.[17] J. Baek, J. Yoon, Solubility of carbon dioxide in aqueous solutions of 2-amino-2-methyl-1, 3-propanediol, J. Chem. Eng. Data 43 (1998) 635-637.[18] G. Murshid, A.M. Shariff, K.K. Lau, M.A. Bustam, F. Ahmad, Physical properties of piperazine (PZ) activated aqueous solutions of 2-amino-2-hydroxymethyl-1, 3-propanediol (AHPD + PZ), J. Chem. Eng. Data 57 (2012) 133-136.[19] S. Xu, F.D. Otto, A.E. Mather, Physical properties of aqueous AMP solutions, J. Chem. Eng. Data 36 (1991) 71-75.[20] M.H. Li, Y.C. Lie, Densities and viscosities of solutions of monoethanolamine + Nmethyldiethanolamine + water and monoethanolamine + 2-amino-2-methyl-1-propanol + water, J. Chem. Eng. Data 39 (1994) 444-447.[21] A.V. Rayer, K.Z. Sumon, A. Henni, P. Tontiwachwuthikul, Physiochemical properties of {1-methyl piperazine (1) + water (2)} system at T = (298.15 to 343.15) K and atmospheric pressure, J. Chem. Thermodyn. 43 (2011) 1897-1905.[22] A.M. Shariff, G. Murshid, K.K. Lau, M.A. Bustam, F. Ahmed, Solubility of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol at high pressure, World Acad. Sci. Eng. Technol. 60 (2011) 1050-1053.[23] A. Veawab, P. Tontiwachwuthikul, A. Chakma, Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions, Ind. Eng. Chem. Res. 38 (1999) 3917-3924.[24] X. Chen, S.A. Freeman, G.T. Rochelle, Foaming of aqueous piperazine and monoethanolamine for CO2 capture, Int. J. Greenhouse Gas Control 5 (2011) 381-386.[25] L.M. Galan Sanchez, G.W. Meindersma, A.B. Haan, Solvent properties of functionalized ionic liquids for Co2 absorption, Chem. Eng. Res. Des. 85 (2007) 31-39.[26] M.J.Muldoon, J.L. Anderson, J.K. Dixon, J.F. Brennecke, Improving carbon dioxide solubility in ionic liquids, J. Phys. Chem. 111 (2007) 9001-9009.[27] H.C. Chang, J.C. Jiang, C.Y. Chang, J.C. Su, C.H. Hung, Y.C. Liou, S.H. Lin, Structural organization in aqueous solutions of 1-butyl-3-methylimidazolium halides: a highpressure infrared spectroscopic study on ionic liquids, J. Phys. Chem. 112 (2008) 4351-4356.[28] K.R. Harris, M. Kanakubo, L.A. Woolf, Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: viscosity and density relationships in ionic liquids, J. Chem. Eng. Data 52 (2007) 2425-2430.[29] M.M. Taib, T. Murugesan, Solubilities of CO2 in aqueous solutions of ionic liquids (ILs) and monoethanolamine (MEA) at pressures from 100 to 1600 kPa, Chem. Eng. J. 181-182 (2012) 56-62.[30] P.J. Carvalho, V.H. Alvarez, I.M. Marrucho, M. Aznar, J.A.P. Coutinho, High carbon dioxide solubilities in trihexyltetradecyl phosphonium-based ionic liquids, J. Supercrit. Fluids 52 (2010) 258-265.[31] A. Blasig, J. Tang, X. Hu, Y. Shen, M. Radosz, Magnetic suspension balance study of carbon dioxide solubility in ammonium-based polymerized ionic liquids: poly (p-vinylbenzyltrimethyl ammonium tetrafluoroborate) and poly ([2-(methacryloyloxy) ethyl] trimethyl ammonium tetrafluoroborate), Fluid Phase Equilib. 256 (2007) 75-80.[32] K.A. Kurnia, M.I.A. Mutalib, Densities and viscosities of binary mixture of ionic liquid bis (2-hydroxyethyl) ammonium propionate with methanol, ethanol, and 1-propanol at T = (293.15, 303.15, 313.15, 323.15) K and at P = 0.1 MPa, J. Chem. Eng. Data 56 (2011) 79-83.[33] K.A. Kurnia, F. Harris, C.D. Wilfred, M.I.A. Mutalib, T. Murugesan, Thermodynamic properties of CO2 absorption in hydroxyl ammonium ionic liquids at pressures of (100-1600) kPa, J. Chem. Thermodyn. 41 (2009) 1069-1073.[34] B.P.Mandal, M. Kundu, S.S. Bandyopadhyay, Density and viscosity of aqueous solutions of (N-methyldiethanolamine + monoethanolamine), (N-methyldiethanolamine + diethanolamine), (2-amino-2-methyl-1-propanol + monoethanolamine), and (2-amino-2-methyl-1-propanol + diethanolamine), J. Chem. Eng. Data 48 (2003) 703-707.[35] J. Park, S.J. Yoon, H. Lee, Density, viscosity, and solubility of CO2 in aqueous solutions of 2-amino-2-hydroxymethyl-1, 3-propanediol, J. Chem. Eng. Data 47 (2002) 970-973.[36] A.V. Rayer, K.Z. Sumon, A. Henni, P. Tontiwachwuthikul, Physicochemical properties of {1-methyl piperazine (1) + water (2)} system at T = (298.15 to 343.15) K and atmospheric pressure, J. Chem. Thermodyn. 43 (2011) 1897-1905.[37] T. Kavitha, P. Attri, P. Venkatesu, R.S. Rama Devi, T. Hofman, Temperature dependence measurements and molecular interactions for ammonium ionic liquid with N-methyl-2-pyrrolidone, J. Chem. Thermodyn. 54 (2012) 223-237.[38] K.A. Kurnia, C.D.Wilfred, T. Murugesan, Thermophysical properties of hydroxyl ammonium ionic liquids, J. Chem. Thermodyn. 41 (2009) 517-521.[39] M.S. Shaikh, A.M. Shariff, M.A. Bustam, G. Murshid, Physicochemical properties of aqueous solutions of sodium L-prolinate as an absorbent for CO2 removal, J. Chem. Eng. Data 59 (2014) 362-368.[40] N.M. Yunus, M.I.A. Mutalib, Z. Man, M.A. Bustam, T. Murugesan, Thermophysical properties of 1-alkylpyridinum bis(trifluoromethylsulfonyl)imide ionic liquids, J. Chem. Thermodyn. 42 (2010) 491-495.[41] A.Muhammad,M.I.A.Mutalib, T.Murugesan, A. Shafeeq, Density and excess properties of aqueous N-methyldiethanolamine solutions from (298.15 to 338.15) K, J. Chem. Eng. Data 53 (2008) 2217-2221. |