[1] T.V. Choudhary, S. Banerjee, V.R. Choudhary, Catalysts for combustion of methane and lower alkanes, Appl. Catal. A 234 (2002) 1-23.[2] V.V. Kharton, F.M.B. Marques, A. Atkinson, Transport properties of solid oxide electrolyte ceramics: A brief review, Solid State Ionics 174 (2004) 135-149.[3] M.A. Pena, J.L.G. Fierro, Chemical structures and performance of perovskite oxides, Chem. Rev. 101 (2001) 1981-2017.[4] Y.Wei,W. Yang, J. Caro, H.Wang, Dense ceramic oxygen permeablemembranes and catalytic membrane reactors, Chem. Eng. J. 220 (2013) 185-203.[5] P. Haworth, S. Smart, J. Glasscock, J.C. Diniz da Costa, Yttrium doped BSCF membranes for oxygen separation, Sep. Purif. Technol. 81 (2011) 88-93.[6] X. Zhu, S. Sun, Y. Cong, W. Yang, Operation of perovskite membrane under vacuum and elevated pressures for high-purity oxygen production, J. Membr. Sci. 345 (2009) 47-52.[7] J. Martynczuk, F. Liang, M. Arnold, V. Šepelák, A. Feldhoff, Aluminum-doped perovskites as high-performance oxygen permeation materials, Chem. Mater. 21 (2009) 1586-1594.[8] Y.Wei, H. Liu, J. Xue, Z. Li, H. Wang, Preparation and oxygen permeation of U-shaped perovskite hollow-fiber membranes, AIChE J. 57 (2011) 975-984.[9] Q. Liao, Y. Chen, Y. Wei, L. Zhou, H. Wang, Performance of U-shaped BaCo0.7Fe0.2Ta0.1O3-δ hollow-fiber membranes reactor with high oxygen permeation for methane conversion, Chem. Eng. J. 237 (2014) 146-152.[10] A. Leo, S. Liu, J.C. Diniz da Costa, Production of pure oxygen from BSCF hollow fiber membranes using steam sweep, Sep. Purif. Technol. 78 (2011) 220-227.[11] D. Damiani, J.T. Litynski, H.G. McIlvried, D.M. Vikara, R.D. Srivastava, The US department of Energy's R&D program to reduce greenhouse gas emissions through beneficial uses of carbon dioxide, Greenhouse Gases Sci. Technol. 2 (2012) 9-16.[12] M. Schulz, U. Pippardt, L. Kiesel, K. Ritter, R. Kriegel, Oxygen permeation of various archetypes of oxygen membranes based on BSCF, AIChE J 58 (2012) 3195-3202.[13] X. Tan, Z. Wang, B. Meng, X. Meng, K. Li, Pilot-scale production of oxygen from air using perovskite hollow fibre membranes, J. Membr. Sci. 352 (2010) 189-196.[14] Y. Teraoka, H.-M. Zhang, S. Furukawa, N. Yamazoe, Oxygen permeation through perovskite-type oxides, Chem. Lett. 14 (1985) 1743-1746.[15] H.J.M. Bouwmeester, Dense ceramic membranes for methane conversion, Catal. Today 82 (2003) 141-150.[16] K. Efimov, T. Halfer, A. Kuhn, P. Heitjans, J. Caro, A. Feldhoff, Novel cobalt-free oxygen-permeable perovskite-typemembrane, Chem. Mater. 22 (2010) 1540-1544.[17] H. Wang, C. Tablet, A. Feldhoff, J. Caro, A cobalt-free oxygen-permeable membrane based on the perovskite-type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3-δ, Adv. Mater. 17 (2005) 1785-1788.[18] J. Martynczuk, K. Efimov, L. Robben, A. Feldhoff, Performance of zinc-doped perovskite-type membranes at intermediate temperatures for long-term oxygen permeation and under a carbon dioxide atmosphere, J. Membr. Sci. 344 (2009) 62-70.[19] X. Zhu, H. Wang, W. Yang, Novel cobalt-free oxygen permeable membrane, Chem. Commun. (2004) 1130-1131.[20] X. Zhu, Y. Cong, W. Yang, Oxygen permeability and structural stability of BaCe0.15Fe0.0.85O3-δ membranes, J. Membr. Sci. 283 (2006) 38-44.[21] K. Watenabe, M. Yuasa, T. Kida, Y. Teraoka, N. Yamazoe, K. Shimanoe, Highperformance oxygen-permeable membranes with an asymmetric structure using Ba0.95La0.05FeO3-δ perovskite-type oxide, Adv. Mater. 22 (2010) 2367-2370.[22] T. Kida, S. Ninomiya, K. Watanabe, N. Yamazoe, K. Shimanoe, High oxygen permeation in Ba0.95La0.05FeO3-δ membranes with surface modification, ACS Appl. Mater. Interfaces 2 (2010) 2849-2853.[23] K. Watanabe, D. Takauchi, M. Yuasa, T. Kida, K. Shimanoe, Y. Teraoka, N. Yamazoe, Oxygen permeation properties of Co-free perovskite-type oxide membranes based on BaFe1-yZryO3-δ, J. Electrochem. Soc. 156 (2009) E81-E85.[24] V.V. Kharton, A.L. Shaula, F.M.M. Snijkers, J.F.C. Cooymans, J.J. Luyten, A.A. Yaremchenko, A.A. Valente, E.V. Tsipis, J.R. Frade, F.M.B. Marques, J. Rocha, Processing, stability and oxygen permeability of Sr(Fe, Al)O3-based ceramic membranes, J. Membr. Sci. 252 (2005) 215-225.[25] M. Parras, M. Vallet-Regi, J.M. González-Calbet, J.C. Grenier, Oxygen vacancy distribution in 6HBaFeO3-y (0.20 ≤ y ≤ 0.35), J. Solid State Chem. 83 (1989) 121-131.[26] N. Hayashi, T. Yamamoto, H. Kageyama, M. Nishi, Y. Watanabe, T. Kawakami, Y. Matsushita, A. Fujimori, M. Takano, BaFeO3: A ferromagnetic iron oxide, Angew. Chem. Int. Ed. 123 (2011) 12755-12758.[27] Y.Wang, Q. Liao, L. Zhou, H.Wang, Oxygen permeability and structure stability of a novel cobalt-free perovskite Gd0.33Ba0.67FeO3-δ, J. Membr. Sci. 457 (2014) 82-87.[28] H. Luo, B. Tian, Y.Wei, H.Wang, H. Jiang, J. Caro, Oxygen permeability and structural stability of a novel tantalum-doped perovskite BaCo0.7Fe0.2Ta0.1O3-δ, AIChE J 56 (2010) 604-610.[29] T. Kida, D. Takauchi, K. Watanabe, M. Yuasa, K. Shimanoe, Y. Teraoka, N. Yamazoe, Oxygen permeation properties of partially A-site substituted BaFeO3-δ perovskites, J. Electrochem. Soc. 156 (2009) E187-E191.[30] J. Tong,W. Yang, R. Cai, B. Zhu, G. Xiong, L. Lin, Investigation on the structure stability and oxygen permeability of titanium-doped perovskite-type oxides of BaTi0.2CoxFe0.8-xO3-δ (x = 0.2-0.6), Sep. Purif. Technol. 32 (2003) 289-299.[31] J. Tong, W. Yang, R. Cai, B. Zhu, L. Lin, Novel and ideal zirconium-based dense membrane reactors for partial oxidation of methane to syngas, Catal. Lett. 78 (2002) 129-137.[32] X. Chen, L. Huang, Y. Wei, H. Wang, Tantalum stabilized SrCoO3-δ perovskite membrane for oxygen separation, J. Membr. Sci. 368 (2011) 159-164.[33] E.G. Babakhani, J. Towfighi, L. Shirazi, A. Nakhaeipour, A. Zamaniyan, Z. Shafiei, Structure stability and oxygen permeability of perovskite-type oxides of Ba0.5Sr0.5Co0.8Fe0.1R0.1O3-δ (R = Al, Mn, Fe, Ce, Cr, Ni, Co), J. Mater. Sci. Technol. 28 (2012) 177-183. |