[1] W.S. Wanngah, S. Fatinathan, Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads, Chem. Eng. J. 143 (2008) 62-72.[2] S.O. Lesmana, N. Febriana, F.E. Soetaredjo, J. Sunarso, S. Ismadji, Studies on potential applications of biomass for the separation of heavy metals from water and wastewater, Biochem. Eng. J. 44 (2009) 19-41.[3] T.S. Anirudhan, C.D. Bringle, P.G. Radhakrishnan, Heavy metal interactions with phosphatic clay: Kinetic and equilibrium studies, Chem. Eng. J. 200-202 (2012) 149-157.[4] B. Dou, V. Dupont,W. Pan, B. Chen, Removal of aqueous toxic Hg(II) by synthesized TiO2 nanoparticles and TiO2/montmorillonite, Chem. Eng. J. 166 (2011) 631-638.[5] R. Herrero, P. Lodeiro, C. Rey-Castro, T. Vilarino, D.S. Vicente, Removal of inorganic mercury from aqueous solutions by biomass of the marine macroalga Cystoseira baccata, Water Res. 39 (2005) 3199-3210.[6] X.L. Wang, S.O. Pehkonen, A.K. Ray, Photocatalytic reduction of Hg(II) on two commercial TiO2 catalysts, Electrochim. Acta 49 (2004) 1435-1444.[7] K.P. Lisha, M. Shihabudheen, T. Maliyekkal, Manganese dioxide Nano whiskers: A potential adsorbent for the removal of Hg(II) from water, Chem. Eng. J. 160 (2010) 432-439.[8] H. Bessbousse, T. Rhlalou, J.F. Verchère, L. Lebrun, Mercury removal from wastewater using a poly(vinylalcohol)/poly(vinylimidazole) complexing membrane, Chem. Eng. J. 164 (2010) 37-48.[9] L.B. Khalil, M.W. Rophael, W.E. Mourad, The removal of the toxic Hg(II) salts from water by photocatalysis, Appl. Catal. B Environ. 36 (2002) 125-130.[10] L.R. Skubal, N.K. Meshkov, Reduction and removal of mercury from water using arginine-modified TiO2, J. Photochem. Photobiol. A Chem. 148 (2002) 211-214.[11] O. Horváth, J. Hegyi, Light-induced reduction of heavy-metal ions on titanium dioxide dispersions, Prog. Colloid Polym. Sci. 117 (2002) 211-216.[12] J. Hegyi, O. Horvath, Photocatalytic reduction of mercury(II) and simultaneous oxidative degradation of surfactants in titanium dioxide suspensions, Prog. Colloid Polym. Sci. 125 (2004) 10-16.[13] S.M.I. Sajidu, I. Persson, W.R.L. Masamba, E.M.T. Henrym, Mechanisms of heavy metal sorption on alkaline clays from Tundulu in Malawi as determined by EXAFS, J. Hazard. Mater. 158 (2008) 401-409.[14] J.P. Gustafsson, G. Jacks, M. Simonsson, I. Nilsson, Soil and water chemistry, Lantbruks Universitet Sveriges (SLU), KTH Arkitektur ochsamhällsbyggnad, Uppsala, Sweden, 2005.[15] B. Tyagi, C.D. Chudasama, R.V. Jasra, Determination of structuralmodification in acid activatedmontmorillonite clay by FT-IR spectroscopy, Spectrochim. Acta A 64 (2006) 273-278.[16] K.G. Bhattacharyya, S.S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review, Adv. Colloid Interf. Sci. 140 (2008) 114-131.[17] H. van Olphen, An introduction to clay colloid chemistry,Wiley Interscience, 1977 187.[18] T. Adhikari, M.V. Singh, Sorption characteristics of lead and cadmium in some soils of India, Geoderma 114 (2003) 81-92.[19] S. Serrano, F. Garrido, C.G. Campbel, M.T. Garcia-Gonzalez, Competitive sorption of cadmium and lead in acid soils of Central Spain, Geoderma 124 (2005) 91-104.[20] M.B. Mcbride, Environmental chemistry of soils, Oxford University Press, New York, 1994.[21] M.G. da Fonseca, M.M. de Oliveira, L.N.H. Arakaki, Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a clay mineral, J. Hazard. Mater. B137 (2006) 288-292.[22] C.A. Coles, R.N. Yong, Aspects of kaolinite characterization and retention of Pb and Cd, Appl. Clay Sci. 22 (2000) 39-45.[23] M. Auboiroux, P. Baillif, J.C. Touray, F. Bergaya, Fixation of Zn2+ and Pb2+ by a Camontmorillonite in brines and dilute solutions: preliminary results, Appl. Clay Sci. 11 (1996) 117-126.[24] C. Breen, C.M. Bejarano-Bravo, L.Madrid, G. Thompson, B.E.Mann, Na/Pb, Na/Cd and Pb/Cd exchange on a low iron Texas bentonite in the presence of competing H+ ion, Colloids Surf. A Physicochem. Eng. Asp. 155 (1999) 211-219.[25] J.C. Echeverria, I. Zerranz, J. Estella, J.J. Garrido, Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of lead on illite, Appl. Clay Sci. 30 (2005) 103-115.[26] N. Bektas, B.A. Agim, S. Kara, Kinetic and equilibrium studies in removing lead ions from aqueous solutions by natural sepiolite, J. Hazard. Mater. 112 (2004) 115-122.[27] X. Gu, L.J. Evans, S.J. Barabash, Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite, Geochim. Cosmochim. Acta 74 (2010) 5718-5728.[28] M.F. Brigatti, S. Colonna, D. Malferrari, L. Medici, L. Poppi, Mercury adsorption by montmorillonite and vermiculite: A combined XRD, TG-MS, and EXAFS study, Appl. Clay Sci. 28 (2005) 1-8.[29] E. Eren, B. Afsin, An investigation of Cu(II) adsorption by raw and acid-activated bentonite: A combined potentiometric, thermodynamic, XRD, IR, DTA study, J. Hazard. Mater. 151 (2008) 682-691.[30] H. Chen, Y. Zhao, A. Wang, Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite, J. Hazard. Mater. 149 (2007) 346-354.[31] S. Nir, G. Rytwo, U. Yermiyahu, L. Margulies, A model for cation adsorption to clays and membranes, Colloid Polym. Sci. 272 (1994) 619-632.[32] A.M.L. Kraepiel, K. Keller, F.M.M. Morel, A model for metal adsorption on montmorillonite, J. Colloid Interface Sci. 210 (1999) 43-54.[33] C.H. Weng, C.Z. Tsai, S.H. Chu, Y.C. Sharma, Adsorption characteristics of copper(II) onto spent activated clay, Sep. Purif. Technol. 54 (2007) 187-197.[34] D.G. Strawn, N.E. Palmer, L.J. Furnare, C. Goodell, J.E. Amonette, R.K. Kukkadapu, Copper sorption mechanisms on smectites, Clays Clay Miner. 52 (2004) 321-333.[35] E. Ederm, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci. 280 (2004) 309-314.[36] B. Tansel, J. Sager, T. Rector, J. Garlan, R.F. Strayer, L.R. Levine, M. Hummerick, J. Bauer, Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes, Sep. Purif. Technol. 51 (2006) 40-47.[37] K. Anoop Krishnan, T.S. Anirudhan, Uptake of heavy metals in batch systems by sulfurized steam activated carbon prepared from sugarcane bagasse pith, Ind. Eng. Chem. Res. 41 (2002) 5085-5093.[38] S.S. Gupta, K.G. Bhattacharyya, Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium, J. Environ. Manag. 87 (2008) 46-58.[39] R.G. Hardy, M.E. Tucker, X-ray powder diffraction of sediments, in: M.E. Tucker (Ed.), Techniques in sedimentology, Blackwell Scientific publishing, New York, Oxford 1988, pp. 191-228.[40] T. Novakovi?, L. Ro?i?, S. Petrovi?, A. Rosi?, Synthesis and characterization of acidactivated Serbian smectite clays obtained by statistically designed experiments, Chem. Eng. J. 137 (2008) 436-442.[41] F. Uddin, Clays, nanoclays, and montmorillonite minerals, Metall. Mater. Trans. A 39 (2008) 2804-2814.[42] J. Ravichandran, B. Sivasankar, Properties and catalytic activity of acid-modified montmorillonite and vermiculite, Clays Clay Miner. 45 (1997) 854-858.[43] J.I. Trombka, J. Schweitzer, C. Selavka, M. Dale, N. Gahn, S. Floyd, Crime scene investigations using portable, non-destructive space exploration technology, Forensic Sci. Int. 129 (2002) 1-9.[44] W. Huang, D.E. Day, K. Kittiratanapiboon, M.N. Rahaman, Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions, J. Mater. Sci. Mater. Med. 17 (2006) 583-596.[45] J. Schweitzer, J.I. Trombka, S. Floyd, C. Selavka, G. Zeosky, N. Gahn, Portable generator-based XRF instrument for non-destructive analysis at crime scenes, Nucl. Instrum. Methods Phys. Res. B 241 (2005) 816-819.[46] M.P.S. Krekeler, J. Morton, J. Lepp, C.M. Tselepis, M. Samsonov, L.E. Kearns, Mineralogical and geochemical investigation of clay-rich mine tailings from a closed phosphate mine, Bartow Florida, USA, Environ. Geol. 55 (2008) 123-147.[47] K.O. Adebowale, I.E. Unuabonah, B.I. Olu-Owolabi, The effect of some operating variables on the adsorption of lead and cadmiumions on kaolinite clay, J. Hazard. Mater. B 134 (2006) 130-139.[48] K.G. Bhattacharyya, S.S. Gupta, Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from water on montmorillonite: Influence of acid activation, J. Colloid Interface Sci. 310 (2007) 411-424.[49] K.G. Bhattacharyya, S.S. Gupta, Removal of Cu (II) by natural and acid-activated clays: An insight of adsorption isotherm, kinetic and thermodynamics, Desalination 272 (2011) 66-75.[50] B. Yu, Y. Zhang, A. Shukla, S.S. Shukla, K.L. Dorris, The removal of heavy metals from aqueous solutions by sawdust adsorption—Removal of lead and comparison of its adsorption with copper, J. Hazard. Mater. B 84 (1) (2001) 83-94.[51] C.K. Jain, M.K. Sharma, Adsorption of cadmium on bed sediments of river Hindon: Adsorption models and kinetics, Water Air Soil Pollut. 137 (2002) 1-19.[52] K. Kadirvalu, C. Namasivayam, Activated carbon from coconut coir pith as metal adsorbent: Adsorption of Cd(II) from aqueous solution, Adv. Environ. Res. 7 (2003) 471-478.[53] B. Yu, Y. Zhang, A. Shukla, S.S. Shukla, K.L. Dorris, The removal of heavy metal from aqueous solutions by saw-dust adsorption—Removal of copper, J. Hazard. Mater. B 80 (2000) 33-42.[54] V.K. Gupta, C.K. Jain, I. Ali, M. Sharma, V.K. Saini, Removal of cadmium and nickel from wastewater using bagasse fly ash—A sugar industry waste, Water Res. 37 (2003) 4038-4044.[55] S. Malamis, E. Katsou, A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms, J. Hazard. Mater. 252-253 (2013) 428-461.[56] Y.S. Ho, Reviewof second-ordermodels for adsorption systems, J. Hazard. Mater. 136 (2006) 681-689.[57] Z. Ghasemi, A. Seif, T.S. Ahmadi, B. Zargar, F. Rashidi, G.M. Rouzbahani, Thermodynamic and kinetic studies for the adsorption of Hg(II) by nano-TiO2 from aqueous solution, Adv. Powder Technol. 23 (2012) 148-156.[58] E. Erdem, N. Karpinar, R. Donat, The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci. 280 (2004) 309-314.[59] F. Rashidi, R.S. Sarabi, Z. Ghasemi, A. Seif, Kinetic, equilibrium and thermodynamic studies for the removal of lead(II) and copper(II) ions from aqueous solutions by nanocrystalline TiO2, Superlattice. Microst. 48 (2010) 577-591.[60] A. Özcan, E.M. Öncü, A.S. Özcan, Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural Sepiolite, Colloids Surf. A 277 (2006) 90-97.[61] E. Alvarez-Ayuso, A. Garcia-Sanchez, X. Querol, Purification of metal electroplating waste waters using zeolites, Water Res. 37 (2003) 4855-4862.[62] D.M. Manohar, K. Anoop Krishnan, T.S. Anirudhan, Removal of mercury(II) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazoleclay, Water Res. 36 (2002) 1609-1619.[63] O. Yavuz, Y. Altunkaynak, F. Guzel, Removal of copper, cobalt and manganese from aqueous solution by kaolinite, Water Res. 37 (2003) 948-952.[64] E. Alvarez-Ayuso, A. Garcia-Sanchez, Removal of heavymetals fromwaste waters by natural and Na-exchanged bentonites, Clays Clay Miner. 51 (2003) 475-480.[65] S.H. Lin, R.S. Juang, Heavy metal removal from water by sorption using surfactantmodified montmorillonite, J. Hazard. Mater. B92 (2002) 315-326.[66] A.T. De Leon, D.G. Nunes, J. Rubio, Adsorption of Cu ions onto a 1:10 phenanthrolinegrafted Brazilian bentonite, Clays Clay Miner. 51 (2003) 58-64.[67] Z. Zeng, J.Q. Jiang, Effects of the type and structure of modified clays on adsorption performance, Int. J. Environ. Stud. 62 (2005) 403-414.[68] T. Sheel, Y. Arthoba Nayaka, Kinetics and thermodynamics of cadmiumand lead ions adsorption on NiO nanoparticles, Chem. Eng. J. 191 (2012) 123-131.[69] I. Smici klas, A. Onjia, S. Raicevic, D. Janackovic, M.Metric, Factors influencing the removal of divalent cations by hydroxyapatite, J. Hazard. Mater. 152 (2008) 876-884.[70] Y.S. Ho, Isotherm for the sorption of lead onto peat: Comparison of linear and nonlinear methods, Pol. J. Environ. Stud. 15 (2006) 81-86.[71] K.G. Bhattacharyya, S.S. Gupta, Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu (II) from aqueous solution, Sep. Purif. Technol. 50 (2006) 388-397.[72] K.G. Bhattacharyya, S.S. Gupta, Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: Kinetic and thermodynamic study, Chem. Eng. J. 136 (2008) 1-13.[73] X.S. Wang, C. Sun, Removal of copper(II) ions from aqueous solutions using Namordenite, Sep. Sci. Technol. 42 (2007) 1215-1230.[74] M.M. Abou-Mesalam, Sorption kinetics of copper, zinc, cadmium and nickel ions on synthesized silico-antimonate ion exchanger, Colloids Surf. A Physicochem. Eng. Asp. 225 (2003) 85-94.[75] T. Sheel, Y. Arthoba Nayaka, R. Viswanatha, S. Basavanna, T.G. Venkatesha, Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles, Adv. Powder Technol. 217 (2012) 163-170.[76] K.O. Adebowale, E.I. Unuabonah, B.I. Olu-Owolabi, Kinetic and thermodynamic aspects of the adsorption of Pb2+ and Cd2+ ions on tripolyphosphate-modified kaolinite clay, Chem. Eng. J. 136 (2008) 99-107.[77] J. Echeverria, J. Indurain, E. Churio, J. Garrido, Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of Ni on illite, Colloids Surf. A Physicochem. Eng. Asp. 218 (2003) 175-187.[78] K.G. Bhattacharyya, S.S. Gupta, Adsorption of Fe(III) from water by natural and acid activated clays: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions, Adsorption 12 (2006) 185-204.[79] D.B. Singh, D.C. Rupainwar, G. Prasad, K.C. Jayaprakas, Studies on the Cd(II) removal from water by adsorption, J. Hazard. Mater. 60 (1998) 29-40.[80] M. Doula, A. Ioannou, A. Dimirkou, Thermodynamics of copper adsorption-desorption by Ca-Kaolinite, Adsorption 6 (2000) 325-335. |