[1] N.P. Suh, Innovation in polymer processing, Hanser/Gardner Publications, NewYork, 1996.[2] D.I. Collais, D.G. Baird, Tensile toughness of microcellular foams of polystyrene, styrene-acrylonitrile copolymer, and polycarbonate, and the effect of dissolved gas on the tensile toughness of the same polymer matrices and microcellular foams, Polym. Eng. Sci. 35 (1995) 1167-1177.[3] A. Zhang, Q. Zhang, H. Bai, L. Li, J. Li, Polymeric nanoporous materials fabricated with supercritical CO2 and CO2-expanded liquids, Chem. Soc. Rev. 43 (2014) 6938-6953.[4] M. Sauceau, J. Fages, A. Common, C. Nikitine, E. Rodier, New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide, Prog. Polym. Sci. 36 (2011) 749-766.[5] M. Yuan, L.S. Turng, Microstructure and mechanical properties of microcellular injection molded polyamide-6 nanocomposites, Polymer 46 (2005) 7273-7292.[6] J.C. Feng, M.C. Chen, Z.T. Huang, Assessment of efficacy of trivalent lanthanum complex as surface modifier of calcium carbonate, J. Appl. Polym. Sci. 82 (2001) 1339-1345.[7] J. Zhang, Q.J. Ding, N.L. Zhou, Studies on crystal morphology and crystallization kinetics of polypropylene filled with CaCO3H of different size and size distribution, J. Appl. Polym. Sci. 101 (2006) 2437-2444.[8] T. Labour, C. Gauthier, R. Séguéla, Influence of the β crystalline phase on the mechanical properties of unfilled and CaCO3H-filled polypropylene. I. Structural andmechanical characterisation, Polymer 42 (2001) 7127-7135.[9] C.M. Chan, J. Wu, J.X. Li, Polypropylene/calcium carbonate nanocomposites, Polymer 43 (2002) 2981-2992.[10] J. Ding, W.H. Ma, F.J. Song, Q. Zhong, Effect of nano-calcium carbonate on microcellular foaming of polypropylene, J. Mater. Sci. 48 (2013) 2504-2511.[11] J. Ding, J.N. Shangguan,W.H. Ma, Q. Zhong, Foaming behavior of microcellular foam polypropylene/modified nano calcium carbonate composites, J. Appl. Polym. Sci. 128 (2013) 3639-3651.[12] Martini-Vvedensky, J. E., Suh, N. P., Waldman F. A., "Saturation with inert gas, depressurization, and quick-cooling", U.S. Patent 4,473,665 (1984).[13] J. Xu, D. Pierick, Microcellular foam processing in reciprocating screw injection molding machine, J. Injection Molding Technol. 5 (2001) 152-159.[14] L.J. Lee, C. Zeng, X. Cao, Polymer nanocomposite foams, Compos. Sci. Technol. 65 (2005) 2344-2363.[15] S. Hwang, P.P. Hsu, J. Yeh, C. Hu, K. Chang, Effect of organoclay on the mechanical/thermal properties of microcellular injection molded polystyrene-clay nanocomposites, Int. Commun. Heat Mass Transfer 36 (2009) 799-805.[16] G.Q. Zheng, Q. Li, J.B. Chen, C.Y. Shen, W. Yang, M.B. Yang, Gas-assisted injection molded polypropylene/glass fiber composite: Foaming structure and tensile strength, Polym.-Plast. Technol. Eng. 48 (2009) 170-176.[17] J.F. Gómez-Gómez, D. Arencón, M.A. Sánchez-Soto, A.B.Martínez, Influence of the injection moulding parameters on the microstructure and thermal properties of microcellular polyethylene terephthalate glycol foams, J. Cell. Plast. 49 (2012) 47-63.[18] H.Y. Mi, X. Jing, J. Peng, L.-S. Turng, X.F. Peng, Influence and prediction of processing parameters on the properties of microcellular injection molded thermoplastic polyurethane based on an orthogonal array test, J. Cell. Plast. 49 (2013) 439-458.[19] M.F. Kemmere, T. Meyer, Supercritical carbon dioxide: In polymer reaction engineering, WIELY-VCH, Weinheim, Germany, 2005.[20] K.T. Okamoto, Microcellular processing, Hanser, Munich, 2003.[21] D. Li, T. Liu, L. Zhao, Controlling sandwich-structure of PETmicrocellular foams using coupling of CO2 diffusion and induced crystallization, AICHE J. 58 (2012) 2512-2523.[22] W. Zhai, H.Wang, J. Yu, Foaming behavior of isotactic polypropylene in supercritical CO2 influenced by phase morphology via chain grafting, Polymer 49 (2008) 3146-3156.[23] G.Q. Zheng,W. Yang,M.B. Yang, J.B. Chen, Gas-assisted injectionmolded polypropylene: The skin-core structure, Polym. Eng. Sci. 48 (2008) 976-986.[24] K.F. Zhang, Z. Lu, Analysis ofmorphology and performance of PPmicrostructures manufactured by micro injection molding, Microsyst. Technol. 14 (2008) 209-214.[25] J.S. Kim, G. Guo, K.H. Wang, C.B. Park, F.W. Maine, processing/structure/property relationships for artificial wood made from stretched PP/wood-fiber composites, SPE-ANTEC Paper, Chicago, USA, 16-19 May 2004. Paper no. 809, 2004.[26] A.K. Chaudhary, K. Jayaraman, Extrusion of linear polypropylene-clay nanocomposite foams, Polym. Eng. Sci. 51 (2011) 1749-1756.[27] K. Taki, T. Yanagimoto, E. Funami, Visual observation of CO2 foaming of polypropylene-clay nanocomposites, Polym. Eng. Sci. 44 (2004) 1004-1011.[28] C. Wang, S.N. Leung, M. Bussmann, W.T. Zhai, C.B. Park, Numerical investigation of nucleating-agent-enhanced heterogeneous nucleation, Ind. Eng. Chem. Res. 49 (2010) 12783-12792.[29] J.S. Colton, N.P. Suh, Nucleation of microcellular foam: Theory and practice, Polym. Eng. Sci. 27 (1987) 500-503.[30] S.N. Leung, A.Wong, Q. Guo, Change in the critical nucleation radius and its impact on cell stability during polymeric foaming processes, Chem. Eng. Sci. 64 (2009) 4899-4907.[31] C.D. Han, C.-Y. Ma, Rheological properties of mixtures of molten polymer and fluorocarbon blowing agent. I. Mixtures of low-density polyethylene and fluorocarbon blowing agent, J. Appl. Polym. Sci. 28 (1983) 831-850.[32] J.H. Han, C.D. Han, A study of bubble nucleation in a mixture ofmolten polymer and volatile liquid in a shear flow field, Polym. Eng. Sci. 28 (1988) 1616-1627.[33] A.C. Papanastasiou, L.E. Scriven, C.W. Macosko, Bubble growth and collapse in viscoelastic liquids analyzed, J. Non-Newtonian Fluid Mech. 16 (1984) 53-75.[34] M. Amon, C.D. Denson, A study of the dynamics of foam growth: Analysis of the growth of closely spaced spherical bubbles, Polym. Eng. Sci. 24 (1984) 1026-1034.[35] K. Taki, Experimental and numerical studies on the effects of pressure release rate on number density of bubbles and bubble growth in a polymeric foaming process, Chem. Eng. Sci. 63 (2008) 3643-3653.[36] A. Arefmanesh, S.G. Advani, Diffusion-induced growth of a gas bubble in a viscoelastic fluid, Rheol. Acta 30 (1991) 274-283.[37] Y. Li, Z. Yao, Z.H. Chen, K. Cao, S.L. Qiu, F.J. Zhu, C.C. Zeng, Z.M. Huang, Numerical simulation of polypropylene foaming process assisted by carbon dioxide: Bubble growth dynamics and stability, Chem. Eng. Sci. 66 (2011) 3656-3665.[38] T.Y. Shiu, Y.J. Chang, C.T. Huang, Dynamic behavior and experimental validation of cell nucleation and growing mechanism in microcellular injection molding process, SPE-ANTEC papers, Orlando, 2012.[39] T.C. Chen, C.T. Huang, Y.C. Chiu, W.D. Wang, C.L. Hsu, C.Y. Lin, L.W. Kao, Material saving and product quality improvementwith the visualization of hot runner design in injection molding, Int. J. Precis. Eng. Manuf. 14 (2013) 1109-1112.[40] X. Sun, L.-S. Turng, E. Dougherty, Artificial neural network-based supercritical fluid dosage control for microcellular injection molding, Adv. Polym. Technol. 31 (2012) 7-19.[41] J. Chen, T. Liu, W.K. Yuan, Solubility and diffusivity of CO2 in polypropylene/microcalcium carbonate composites, J. Supercrit. Fluids 77 (2013) 33-43.[42] K. Taki, T.Murakami, M. Ohshima, Surface tension of polypropylene and polystyrene in super critical carbon dioxide, A.W.P.P. 2002, Singapore, 2002. |