[1] M. Anggraini, A. Kurniawan, K.O. Lu, et al., Antibiotic detoxification from synthetic and real effluents using a novel MTAB surfactant-montmorillonite (organoclay) sorbent, RSC Adv. 4(31) (2014) 16298-16311. [2] M.A. Paivi, S. Tapio, H. Bjarne, et al., Synthesis of sugars by hydrolysis of hemicelluloses-A review. Chem. Rev. 111(9) (2011) 5638-5666. [3] Y. Lu, Kinetic and mechanistic studies of a biomimetic catalyst for hemicellulosic biomass hydrolysis, ProQuest, 2008. [4] T.D. Matson, B. Katalin, A.V. Iretskii, et al., One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels, J. Am. Chem. Soc. 133(35) (2011) 14090-14097. [5] W. Yang, A. Sen, One-step catalytic transformation of carbohydrates and cellulosic biomass to 2,5-dimethyltetrahydrofuran for liquid fuels, ChemSusChem 3(5) (2010) 597-603. [6] M. Chatterjee, Hydrogenation of 5-hydroxymethylfurfural in supercritical carbon dioxide-water:A tunable approach to dimethylfuran selectivity, Green Chem. 16(3) (2014) 1543-1551. [7] Y. Zu, P. Yang, J. Wang, et al., Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst, Appl. Catal. B Environ. 146(3) (2014) 244-248. [8] J.F. White, Top value-added chemicals from biomass volume II-Results of screening for potential candidates from biorefinery lignin, Biomass Fuels 2(2007) 263-275. [9] M.J. Antal, W.S.L. Mok, G.N. Richards, Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose, Carbohydr. Res. 199(1) (1990) 91-109. [10] N. Jiang, R. Huang, W. Qi, et al., Effect of formic acid on conversion of fructose to 5-hydroxymethylfurfural in aqueous/butanol media, Bioenergy Res. 5(2) (2012) 380-386. [11] K.K. Pandey, A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy, J. Appl. Polym. Sci. 71(12) (1999) 1969-1975. [12] R. Weingarten, A. Rodriguez-Beuerman, F. Cao, et al., Selective conversion of cellulose to hydroxymethylfurfural in polar aprotic solvents, ChemCatChem 6(8) (2014) 2229-2234. [13] J.A. Chun, J.W. Lee, Y.B. Yi, et al., Direct conversion of starch to hydroxymethylfurfural in the presence of an ionic liquid with metal chloride, Tex. Dent. J. 62(6) (2010) 326-330. [14] L. Yang, C. Jie, J. Mao, et al., Sodium carbonate-sodium sulfite pretreatment for improving the enzymatic hydrolysis of rice straw, Ind. Crop. Prod. 43(1) (2013) 711-717. [15] M.G. Jackson, Review article:The alkali treatment of straws, Anim. Feed Sci. Technol. 2(2) (1977) 105-130. [16] F.R. Tao, C. Zhuang, Y.Z. Cui, et al., Dehydration of glucose into 5-hydroxymethylfurfural in SO3H-functionalized ionic liquids, Chin. Chem. Lett. 25(5) (2014) 757-761. [17] X. Liu, N. Ai, H. Zhang, et al., Quantification of glucose, xylose, arabinose, furfural, and HMF in corncob hydrolysate by HPLC-PDA-ELSD, Carbohydr. Res. 353(9) (2012) 111-114. [18] M. Roslund, P. Tahtinen, M. Niemitz, et al., Complete assignments of the 1H and 13C chemical shifts and J(H,H) coupling constants in NMR spectra of D-glucopyranose and all D-glucopyranosyl-D-glucopyranosides, Carbohydr. Res. 343(1) (2008) 101-112. [19] Q.Q. Wu, Y.L. Ma, X. Chang, et al., Optimization and kinetic analysis on the sulfuric acid-catalyzed depolymerization of wheat straw, Carbohydr. Polym. 129(2015) 79-86. [20] M.J. Antal, T. Leesomboon, W.S. Mok, et al., Mechanism of formation of 2-furaldehyde from d-xylose, Carbohydr. Res. 91(1991) 71-85. [21] D. Ferreira, A. Barros, M.A. Coimbra, et al., Use of FT-IR spectroscopy to follow the effect of processing in cell wall polysaccharide extracts of a sun-dried pear, Carbohydr. Polym. 45(2) (2001) 175-182. [22] T. Guo, X. Tong, C. Yi, et al., Tin-catalyzed efficient conversion of carbohydrates for the production of 5-hydroxymethylfurfural in the presence of quaternary ammonium salts, Carbohydr. Res. 370(14) (2013) 33-37. [23] F. Benvenuti, C. Carlini, P. Patrono, et al., Heterogeneous zirconium and titanium catalysts for the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydrates, Appl. Catal. A Gen. 193(1-2) (2000) 147-153. [24] A. Avci, B.C. Saha, G.J. Kennedy, et al., High temperature dilute phosphoric acid pretreatment of corn stover for furfural and ethanol production, Ind. Crop. Prod. 50(10) (2013) 478-484. [25] J.Q. Li, The chemistry and technology of furfural and its many by-products, Chem. Eng. J. 81(1) (2001) 338-339. [26] R. Karinen, K. Vilonen, P. Niemelä, Biorefining:Heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural, ChemSusChem 4(8) (2011) 1002-1016. [27] I. Jiménez-Morales, M. Moreno-Recio, J. Santamaría-González, et al., Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural, Appl. Catal. B Environ. 154-155(7) (2014) 190-196. [28] H. Liu, C. Hua, C. Song, et al., Commercially available ammonium salt-catalyzed efficient dehydration of fructose to 5-hydroxymethylfurfural in ionic liquid, Inorg. Chim. Acta 428(2015) 32-36. [29] P. Kavousi, H. Mirhosseini, H. Ghazali, et al., Formation and reduction of 5-hydroxymethylfurfural at frying temperature in model system as a function of amino acid and sugar composition, Food Chem. 182(2015) 164-170. |