[1] A.B. Caracciolo, P. Grenni, F. Falconi, M.C. Caputo, V. Ancona, V.F. Uricchio, Pharmaceutical waste disposal:Assessment of its effects on bacterial communities in soil and groundwater, Chem. Ecol. 27(1) (2011) 43-51.[2] A.D. Anderson, J.M. Nelson, S. Rossiter, F.J. Angulo, Public health consequences of use of antimicrobial agents in food animals in the United States, Microb. Drug Resist. 9(4) (2003) 373-379.[3] J.L. Shimp, J.E. Kinsella, Composition of the mycelium of Penicillium roqueforti, J. Food Sci. 42(3) (1977) 681-684.[4] V.V. Belakhov, A.V. Garabadzhiu, Directions of practical application of mycelial wastes of microbiological production of antibiotics in various areas of industry and agriculture, Russ. J. Gen. Chem. 84(13) (2015) 2664-2676.[5] J.H. Sietsma, J.G.H. Wessels, Solubility of (1-3)-beta-D/(1-6)-beta-D-glucose in fungal walls:Importance of presumed linkage between glucan and chitin, J. Gen. Microbiol. 125(1) (1981) 209-212.[6] T.Q. Wang, H.X. Li, M.Y. Wang, T.W. Tan, Integrative extraction of ergosterol, (1→ 3)-alpha-D-glucan and chitosan from Penicillium chrysogenum mycelia, Chin. J. Chem. Eng. 15(5) (2007) 725-729.[7] N. New, W.F. Stevens, Production of fungal chitosan by solid substrate fermentation followed by enzymatic extraction, Biotechnol. Lett. 24(2) (2002) 131-134.[8] J.W. Li, S.D. Ding, X.L. Ding, Optimization of the ultrasonically assisted extraction of polysaccharides from Zizyphus jujuba cv. jinsixiaozao, J. Food Eng. 80(1) (2007) 176-183.[9] H.O. Kim, J.W. Yun, A comparative study on the production of expolysaccharides between two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures, J. Appl. Microbiol. 99(4) (2005) 728-738.[10] O.A. Arikan, W. Mulbry, C. Rice, Management of antibiotic residues from agricultural sources:Use of composting to reduce chlortetracycline residues in beef manure from treated animals, J. Hazard. Mater. 164(2-3) (2009) 483-489.[11] J.I.R. Castanon, History of the use of antibiotic as growth promoters in European poultry feeds, Poult. Sci. 86(11) (2007) 2466-2471.[12] H. Wang, G. Gurau, R.D. Rogers, Ionic liquid processing of cellulose, Chem. Soc. Rev. 41(4) (2012) 1519-1537.[13] B. Ma, A. Qin, X. Li, C.J. He, Preparation of cellulose hollow fiber membrane from bamboo pulp/1-butyl-3-methylimidazolium chloride/dimethylsulfoxide system, Ind. Eng. Chem. Res. 52(27) (2013) 9417-9421.[14] S.M. Raeisi, M. Tabatabaei, B. Ayati, A. Ghafari, S.H. Mood, A novel combined pretreatment method for rice straw using optimized EMIM[Ac] and mild NaOH, Waste Biomass Valoriz. 7(2016) 97-107.[15] T. Rashid, C.F. Kait, I. Regupathi, T. Murugesan, Dissolution of kraft lignin using Protic Ionic Liquids and characterization, Ind. Crop. Prod. 84(2016) 284-293.[16] M.M. Hossain, L. Aldous, Ionic liquids for lignin processing:dissolution, isolation, and conversion, Aust. J. Chem. 65(11) (2012) 1465-1477.[17] Y. Wu, T. Sasaki, S. Irie, K. Sakurai, A novel biomass-ionic liquid platform for the utilization of native chitin, Polymer 49(9) (2008) 2321-2327.[18] A. Idris, R. Vijayaraghavan, A.F. Patti, D.R. MacFarlane, Distillable protic ionic liquids for keratin dissolution and recovery, ACS Sustain. Chem. Eng. 2(7) (2014) 1888-1894.[19] J.M. Zhang, H. Zhang, J. Wu, J. Zhang, J.S. He, J.F. Xiang, NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids, Phys. Chem. Chem. Phys. 12(8) (2010) 1941-1947.[20] K.L. Zhuo, Y.J. Chen, J. Che, G.Y. Bai, J.J. Wang, Interactions of 1-butyl-3-methylimidazolium carboxylate ionic liquids with glucose in water:a study of volumetric properties, viscosity, conductivity and NMR, Phys. Chem. Chem. Phys. 13(32) (2011) 14542-14549.[21] H.B. Liu, K.L. Sale, B.M. Holmes, B.A. Simmons, S. Singh, Understanding the interactions of cellulose with ionic liquids:A molecular dynamics study, J. Phys. Chem. B 114(12) (2010) 4293-4301.[22] Y.Y. Yao, Y. Li, X.M. Liu, X.C. Zhang, J.J. Wang, X.Q. Yao, S.J. Zhang, Mechanistic study on the cellulose dissolution in ionic liquids by density functional theory, Chin. J. Chem. Eng. 23(2015) 1894-1906.[23] T.V. Doherty, M. Mora-Pale, S.E. Foley, R.J. Linhardt, J.S. Dordick, Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy, Green Chem. 12(11) (2010) 1967-1975.[24] Y. Fukaya, K. Hayashi, M. Wada, H. Ohno, Cellulose dissolution with polar ionic liquids under mild conditions:Required factors for anions, Green Chem. 10(2008) 44-46.[25] J.M.M. Araujo, R. Ferreira, I.M. Marrucho, L.P.N. Rebelo, Solvation of nucleobases in 1,3-dialkylimidazolium acetate ionic liquids:NMR spectroscopy insights into the dissolution mechanism, J. Phys. Chem. B 115(36) (2011) 10739-10749.[26] H.M. Choi, I. Kwon, Dissolution of zein using protic ionic liquids:N-(2-hydroxyethyl) ammonium formate and N-(2-hydroxyethyl) ammonium acetate, Ind. Eng. Chem. Res. 50(50) (2011) 2452-2454.[27] A. Idris, R. Vijayaraghavan, U.A. Rana, D. Fredericks, A.F. Patti, D.R. MacFarlane, Dissolution of feather keratin in ionic liquids, Green Chem. 15(2) (2013) 525-534.[28] Y.L. Zhao, X.M. Liu, J.J. Wang, S.J. Zhang, Insight into the cosolvent effect of cellulose dissolution in imidazolium-based ionic liquid systems, J. Phys. Chem. B 117(30) (2013) 9042-9049.[29] W. Fawcett, R.P. Brooksby, D. Verbovy, I. Bako, G. Palinkas, Studies of anion solvation in polar aprotic solvents, J. Mol. Liq. 118(1-3) (2005) 171-178.[30] A.R. Xu, X. Guo, R. Xu, Understanding the dissolution of cellulose in 1-butyl-3-methylimidazolium acetate + DMAc solvent, Int. J. Biol. Macromol. 81(2015) 1000-1004.[31] J.M. Andanson, E. Bordes, J. Devemy, F. Leroux, A.A.H. Padua, M.F.C. Gomes, Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids, Green Chem. 16(5) (2014) 2528-2538.[32] Y. Chen, Y.Y. Cao, Y.W. Zhang, T.C. Mu, Hydrogen bonding between acetate-based ionic liquids and water:three types of IR absorption peaks and NMR chemical shifts change upon dilution, J. Mol. Struct. 1058(1) (2014) 244-251.[33] S.T. Handy, M. Okello, The 2-position of imidazolium ionic liquids:Substitution and exchange, J. Org. Chem. 70(5) (2005) 1915-1918.[34] H. Shimura, M. Yoshio, K. Hoshino, T. Mukai, H. Ohno, T. Kato, Noncovalent approach to one-dimensional ion conductors:Enhancement of ionic conductivities in nanostructured columnar liquid crystals, J. Am. Chem. Soc. 130(2008) 1759-1765.[35] M.R. Chierotti, R. Gobetto, Solid-state NMR studies of weak interactions in supramolecular systems, Chem. Commun. 39(31) (2008) 1621-1634.[36] A. Mehrdad, Z. Niknam, Investigation of interaction between polyethylene oxide and ionic liquid 1-octyl-3-methyl-imidazolium bromide in aqueous solutions by spectroscopic and viscometric methods, J. Mol. Liq. 223(2016) 100-106.[37] X.Y. Tan, X.X. Li, L. Chen, F.W. Xie, Solubility of starch and microcrystalline cellulose in 1-ethyl-3-methylimidazolium acetate ionic liquid and solution rheological properties, Phys. Chem. Chem. Phys. 18(39) (2016) 27584-27593.[38] B. Lu, A. Xu, J. Wang, Cation does matter:how cationic structure affects the dissolution of cellulose in ionic liquids, Green Chem. 16(3) (2014) 1326-1335.[39] A.R. Xu, J.J. Wang, H.Y. Wang, Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems, Green Chem. 12(2) (2010) 268-275.[40] C. Chiappe, D. Pieraccini, Ionic liquids:solvent properties and organic reactivity, J. Phys. Org. Chem. 18(4) (2005) 275-297. |