[1] S.S. Feng, Y.J. Yin, Z.W. Yin, H.L. Zhang, D.Q. Zhu, Y.J. Tong, H.L. Yang, Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource, Environ. Res. 194 (2021) 110702 [2] D.C. Buzzi, L.S. Viegas, M.A.S. Rodrigues, A.M. Bernardes, J.A.S. Tenório, Water recovery from acid mine drainage by electrodialysis, Miner. Eng. 40 (2013) 82-89 [3] S. Tomiyama, T. Igarashi, C.B. Tabelin, P. Tangviroon, H. Ii, Modeling of the groundwater flow system in excavated areas of an abandoned mine, J. Contam. Hydrol. 230 (2020) 103617 [4] E.T. Brewster, S. Freguia, M. Edraki, L. Berry, P. Ledezma, Staged electrochemical treatment guided by modelling allows for targeted recovery of metals and rare earth elements from acid mine drainage, J. Environ. Manag. 275 (2020) 111266 [5] Q. Zheng, Y.B. Zhang, Z.X. Zhang, H.L. Li, A.J. Wu, H. Shi, Experimental research on various slags as a potential adsorbent for the removal of sulfate from acid mine drainage, J. Environ. Manag. 270 (2020) 110880 [6] Qian G., Fan R., Short M. D., et al., The effects of galvanic interactions with pyrite on the generation of acid and metalliferous drainage, Environmental Science & Technology, 52(9)(2018) 5349-57 [7] C.B. Tabelin, I. Park, T. Phengsaart, S. Jeon, M. Villacorte-Tabelin, D. Alonzo, K. Yoo, M. Ito, N. Hiroyoshi, Copper and critical metals production from porphyry ores and E-wastes:a review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues, Resour. Conserv. Recycl. 170 (2021) 105610 [8] C.B. Tabelin, M. Silwamba, F.C. Paglinawan, A.J.S. Mondejar, H.G. Duc, V.J. Resabal, E.M. Opiso, T. Igarashi, S. Tomiyama, M. Ito, N. Hiroyoshi, M. Villacorte-Tabelin, Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities, Chemosphere 260 (2020) 127574 [9] I. Park, K. Higuchi, C.B. Tabelin, S. Jeon, M. Ito, N. Hiroyoshi, Suppression of arsenopyrite oxidation by microencapsulation using ferric-catecholate complexes and phosphate, Chemosphere 269 (2021) 129413 [10] Y.B. Li, G.J. Qian, P.L. Brown, A.R. Gerson, Chalcopyrite dissolution:scanning photoelectron microscopy examination of the evolution of sulfur species with and without added iron or pyrite, Geochimica Cosmochimica Acta 212 (2017) 33-47 [11] Y.B. Li, G.J. Qian, J. Li, A.R. Gerson, Kinetics and roles of solution and surface species of chalcopyrite dissolution at 650 mV, Geochimica Cosmochimica Acta 161 (2015) 188-202 [12] C.B. Tabelin, J. Dallas, S. Casanova, T. Pelech, G. Bournival, S. Saydam, I. Canbulat, Towards a low-carbon society:a review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives, Miner. Eng. 163 (2021) 106743 [13] C.B. Tabelin, T. Igarashi, M. Villacorte-Tabelin, I. Park, E.M. Opiso, M. Ito, N. Hiroyoshi, Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks:a review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies, Sci. Total Environ. 645 (2018) 1522-1553 [14] S. Panda, A. Biswal, S. Mishra, P.K. Panda, N. Pradhan, U. Mohapatra, L.B. Sukla, B.K. Mishra, A. Akcil, Reductive dissolution by waste newspaper for enhanced meso-acidophilic bioleaching of copper from low grade chalcopyrite:a new concept of biohydrometallurgy, Hydrometallurgy 153 (2015) 98-105 [15] M. Masdarian, A. Azizi, Z. Bahri, Mechanochemical sulfidization of a mixed oxide-sulphide copper ore by co-grinding with sulfur and its effect on the flotation efficiency, Chin. J. Chem. Eng. 28 (3) (2020) 743-748 [16] E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, A. Ballester, Leaching of chalcopyrite with ferric ion. part I:general aspects, Hydrometallurgy 93 (3-4) (2008) 81-87 [17] R.Y. Zhang, T.R. Neu, V. Blanchard, M. Vera, W. Sand, Biofilm dynamics and EPS production of a thermoacidophilic bioleaching archaeon, N. Biotechnol. 51 (2019) 21-30 [18] Q. Li, T. Becker, R.Y. Zhang, T.F. Xiao, W. Sand, Investigation on adhesion of Sulfobacillus thermosulfidooxidans via atomic force microscopy equipped with mineral probes, Colloids Surf. B Biointerfaces 173 (2019) 639-646 [19] L.Y. Ma, H.M. Wang, J.J. Wu, Y.G. Wang, D. Zhang, X.D. Liu, Metatranscriptomics reveals microbial adaptation and resistance to extreme environment coupling with bioleaching performance, Bioresour. Technol. 280 (2019) 9-17 [20] H.B. Zhao, Y.S. Zhang, X. Zhang, L. Qian, M.L. Sun, Y. Yang, Y.S. Zhang, J. Wang, H. Kim, G.Z. Qiu, The dissolution and passivation mechanism of chalcopyrite in bioleaching:an overview, Miner. Eng. 136 (2019) 140-154 [21] C. CASTRO, E.R. DONATI, Improving zinc recovery by thermoacidophilic archaeon Acidianus copahuensis using tetrathionate, Trans. Nonferrous Met. Soc. China 26 (11) (2016) 3004-3014 [22] C.C. Lü, Y.L. Wang, P. Qian, Y. Liu, G.Y. Fu, J. Ding, S.F. Ye, Y.F. Chen, Separation of chalcopyrite and pyrite from a copper tailing by ammonium humate, Chin. J. Chem. Eng. 26 (9) (2018) 1814-1821 [23] Y.P. Bao, C.L. Guo, G.N. Lu, X.Y. Yi, H. Wang, Z. Dang, Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine, Sci. Total. Environ. 616-617 (2018) 647-657 [24] N.T. Phuong Thao, S. Tsuji, S. Jeon, I. Park, C.B. Tabelin, M. Ito, N. Hiroyoshi, Redox potential-dependent chalcopyrite leaching in acidic ferric chloride solutions:Leaching experiments, Hydrometallurgy 194 (2020) 105299 [25] O.T. Ogbughalu, S. Vasileiadis, R.C. Schumann, A.R. Gerson, J. Li, R.S.C. Smart, M.D. Short, Role of microbial diversity for sustainable pyrite oxidation control in acid and metalliferous drainage prevention, J. Hazard. Mater. 393 (2020) 122338 [26] I. Park, C.B. Tabelin, S. Jeon, X.L. Li, K. Seno, M. Ito, N. Hiroyoshi, A review of recent strategies for acid mine drainage prevention and mine tailings recycling, Chemosphere 219 (2019) 588-606 [27] G. Naidu, S. Ryu, R. Thiruvenkatachari, Y. Choi, S. Jeong, S. Vigneswaran, A critical review on remediation, reuse, and resource recovery from acid mine drainage, Environ. Pollut. 247 (2019) 1110-1124 [28] D.M. Kargbo, G. Atallah, S. Chatterjee, Inhibition of pyrite oxidation by a phospholipid in the presence of silicate, Environ. Sci. Technol. 38 (12) (2004) 3432-3441 [29] Pierre Louis A.-M., Yu H., Shumlas S. L., et al., Effect of Phospholipid on Pyrite Oxidation and Microbial Communities under Simulated Acid Mine Drainage (AMD) Conditions, Environmental Science & Technology, 49(13)(2015) 7701-8 [30] K. Kollias, E. Mylona, K. Adam, M. Chrysochoou, N. Papassiopi, A. Xenidis, Characterization of phosphate coating formed on pyrite surface to prevent oxidation, Appl. Geochem. 110 (2019) 104435 [31] Y. Liu, Z. Dang, Y. Xu, T.Y. Xu, Pyrite passivation by triethylenetetramine:an electrochemical study, J. Anal. Methods Chem. 2013 (2013) 387124 [32] Y. Liu, X. Hu, Y. Xu, PropS-SH/SiO 2 nanocomposite coatings for pyrite oxidation inhibition to control acid mine drainage at the source, J. Hazard. Mater. 338 (2017) 313-322 [33] X.L. Li, I. Park, C.B. Tabelin, K. Naruwa, T. Goda, C. Harada, S. Jeon, M. Ito, N. Hiroyoshi, Enhanced pyrite passivation by carrier-microencapsulation using Fe-catechol and Ti-catechol complexes, J. Hazard. Mater. 416 (2021) 126089 [34] I. Park, C.B. Tabelin, K. Seno, S. Jeon, M. Ito, N. Hiroyoshi, Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes, Chemosphere 205 (2018) 414-425 [35] I. Park, C.B. Tabelin, K. Magaribuchi, K. Seno, M. Ito, N. Hiroyoshi, Suppression of the release of arsenic from arsenopyrite by carrier-microencapsulation using Ti-catechol complex, J. Hazard. Mater. 344 (2018) 322-332 [36] C.B. Tabelin, S. Veerawattananun, M. Ito, N. Hiroyoshi, T. Igarashi, Pyrite oxidation in the presence of hematite and alumina:I. Batch leaching experiments and kinetic modeling calculations, Sci. Total. Environ. 580 (2017) 687-698 [37] X. Li, N. Hiroyoshi, C.B. Tabelin, K. Naruwa, C. Harada, M. Ito, Suppressive effects of ferric-catecholate complexes on pyrite oxidation, Chemosphere 214 (2019) 70-78 [38] C.B. Tabelin, S. Veerawattananun, M. Ito, N. Hiroyoshi, T. Igarashi, Pyrite oxidation in the presence of hematite and alumina:II. Effects on the cathodic and anodic half-cell reactions, Sci. Total. Environ. 581-582 (2017) 126-135 [39] J. Ye, A.D. Hu, G.P. Ren, M. Chen, J.H. Tang, P.Y. Zhang, S.G. Zhou, Z. He, Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud, Water Res. 134 (2018) 54-62 [40] Liu T. X., Wang Y., Liu C. X., et al., Conduction Band of Hematite Can Mediate Cytochrome Reduction by Fe(II) under Dark and Anoxic Conditions, Environmental Science & Technology, 54(8)(2020) 4810-9 [41] B.J. Yang, M. Lin, J.H. Fang, R.Y. Zhang, W. Luo, X.X. Wang, R. Liao, B.Q. Wu, J. Wang, M. Gan, B. Liu, Y. Zhang, X.D. Liu, W.Q. Qin, G.Z. Qiu, Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans, Sci. Total Environ. 698 (2020) 134175 [42] M.G. Sephton, J.A. Webb, The role of secondary minerals in remediation of acid mine drainage by Portland cement, J. Hazard. Mater. 367 (2019) 267-276 [43] X.M. Wang, H.K. Jiang, D. Fang, J.R. Liang, L.X. Zhou, A novel approach to rapidly purify acid mine drainage through chemically forming schwertmannite followed by lime neutralization, Water Res. 151 (2019) 515-522 [44] B.J. Yang, W. Luo, Q. Liao, J.Y. Zhu, M. Gan, X.D. Liu, G.Z. Qiu, Photogenerated-hole scavenger for enhancing photocatalytic chalcopyrite bioleaching, Trans. Nonferrous Met. Soc. China 30 (1) (2020) 200-211 [45] B.J. Yang, W. Luo, X.X. Wang, S.C. Yu, M. Gan, J. Wang, X.D. Liu, G.Z. Qiu, The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution, Sci. Total. Environ. 737 (2020) 139485 [46] M. Ranjbar, M.H. Fazaelipoor, M. Ranjbar Hamghavandi, M. Schaffie, Z. Manafi, Modeling study of the bio-dissolution of copper concentrate in a continuous bioreactors system, Miner. Eng. 153 (2020) 106384 [47] E. Govender-Opitz, A. Kotsiopoulos, C.G. Bryan, S.T.L. Harrison, Modelling microbial transport in simulated low-grade heap bioleaching systems:the hydrodynamic dispersion model, Chem. Eng. Sci. 172 (2017) 545-558 [48] J. Daoud, D. Karamanev, Formation of jarosite during Fe2+ oxidation by acidithiobacillus ferrooxidans, Miner. Eng. 19 (9) (2006) 960-967 [49] M.E. Elwood Madden, A.S. Madden, J.D. Rimstidt, S. Zahrai, M.R. Kendall, M.A. Miller, Jarosite dissolution rates and nanoscale mineralogy, Geochimica Cosmochimica Acta 91 (2012) 306-321 [50] S.S. Feng, H.L. Yang, W. Wang, Insights to the effects of free cells on community structure of attached cells and chalcopyrite bioleaching during different stages, Bioresour. Technol. 200 (2016) 186-193 [51] C.B. Tabelin, R.D. Corpuz, T. Igarashi, M. Villacorte-Tabelin, R.D. Alorro, K. Yoo, S. Raval, M. Ito, N. Hiroyoshi, Acid mine drainage formation and arsenic mobility under strongly acidic conditions:importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite, J. Hazard. Mater. 399 (2020) 122844 [52] X.D. Tian, X.T. Li, P.F. Bi, Effect of O-isobutyl-N-ethyl thionocarbamates on flotation behavior of porphyry copper ore and its adsorption mechanism, Appl. Surf. Sci. 503 (2020) 144313 [53] Y. Jia, S. Wang, X. Ma, J. Yang, H. Zhong, Synthesis of thioxopropanamide surfactants for studying the flotation performance and adsorption mechanism on chalcopyrite, Appl. Surf. Sci. 505 (2020) 144539 [54] I. Park, C.B. Tabelin, K. Seno, S. Jeon, H. Inano, M. Ito, N. Hiroyoshi, Carrier-microencapsulation of arsenopyrite using Al-catecholate complex:nature of oxidation products, effects on anodic and cathodic reactions, and coating stability under simulated weathering conditions, Heliyon 6 (1) (2020) e03189 [55] X.R. Zhang, L. Lu, Y.J. Cao, J.B. Yang, W.F. Che, J.T. Liu, The flotation separation of molybdenite from chalcopyrite using a polymer depressant and insights to its adsorption mechanism, Chem. Eng. J. 395 (2020) 125137 [56] H. Liu, X.C. Lu, L.J. Zhang, W.L. Xiang, X.Y. Zhu, J. Li, X.L. Wang, J.J. Lu, R.C. Wang, Collaborative effects of Acidithiobacillus ferrooxidans and ferrous ions on the oxidation of chalcopyrite, Chem. Geol. 493 (2018) 109-120 [57] H.B. Zhao, X.T. Huang, J. Wang, Y.N. Li, R. Liao, X.X. Wang, X. Qiu, Y.M. Xiong, W.Q. Qin, G.Z. Qiu, Comparison of bioleaching and dissolution process of p-type and n-type chalcopyrite, Miner. Eng. 109 (2017) 153-161 [58] R.Y. Zhang, D.Z. Wei, Y.B. Shen, W.G. Liu, T. Lu, C. Han, Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by acidithiobacillus ferrooxidans, Miner. Eng. 95 (2016) 74-78 [59] M. Gan, M.M. Li, J. Zeng, X.X. Liu, J.Y. Zhu, Y.H. Hu, G.Z. Qiu, Acidithiobacillus ferrooxidans enhanced heavy metals immobilization efficiency in acidic aqueous system through bio-mediated coprecipitation, Trans. Nonferrous Met. Soc. China 27 (5) (2017) 1156-1164 [60] Q.Y. Liu, B.H. Chen, S. Haderlein, G. Gopalakrishnan, Y.Z. Zhou, Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China, Ecotoxicol. Environ. Saf. 155 (2018) 50-58 [61] X.Y. Meng, H.B. Zhao, M.L. Sun, Y.S. Zhang, Y.J. Zhang, X. Lv, H. Kim, M. Vainshtein, S. Wang, G.Z. Qiu, The role of cupric ions in the oxidative dissolution process of marmatite:a dependence on Cu2+ concentration, Sci. Total Environ. 675 (2019) 213-223 [62] S. Deng, G.H. Gu, G.S. He, L.J. Li, Catalytic effect of pyrite on the leaching of arsenopyrite in sulfuric acid and acid culture medium, Electrochimica Acta 263 (2018) 8-16 [63] K. Zheng, H.P. Li, L.Y. Wang, X.Y. Wen, Q.Y. Liu, Pyrite oxidation under simulated acid rain weathering conditions, Environ. Sci. Pollut. Res. Int. 24 (27) (2017) 21710-21720 [64] Q.Y. Liu, M. Chen, Y. Yang, The effect of chloride ions on the electrochemical dissolution of chalcopyrite in sulfuric acid solutions, Electrochimica Acta 253 (2017) 257-267 [65] G.H. Gu, K.T. Hu, X. Zhang, X.X. Xiong, H.S. Yang, The stepwise dissolution of chalcopyrite bioleached by leptospirillum ferriphilum, Electrochimica Acta 103 (2013) 50-57 [66] S. Deng, G.H. Gu, An electrochemical impedance spectroscopy study of arsenopyrite oxidation in the presence of Sulfobacillus thermosulfidooxidans, Electrochimica Acta 287 (2018) 106-114 [67] W.Q. Qin, C.R. Yang, S.S. Lai, J. Wang, K. Liu, B. Zhang, Bioleaching of chalcopyrite by moderately thermophilic microorganisms, Bioresour. Technol. 129 (2013) 200-208 [68] Y. Yang, W.H. Liu, M. Chen, A copper and iron K-edge XANES study on chalcopyrite leached by mesophiles and moderate thermophiles, Miner. Eng. 48 (2013) 31-35 |