Chinese Journal of Chemical Engineering ›› 2017, Vol. 25 ›› Issue (11): 1627-1638.DOI: 10.1016/j.cjche.2017.09.014
Chun Zhang, Li Peng, Ji Jiang, Xuehong Gu
收稿日期:
2017-07-29
修回日期:
2017-09-21
出版日期:
2017-11-28
发布日期:
2018-01-18
通讯作者:
Xuehong Gu,E-mail address:xhgu@njtech.edu.cn
基金资助:
Supported by the National Natural Science Foundation of China (21490585, 21606126), National High-tech R&D Program of China (2015AA03A602), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
Chun Zhang, Li Peng, Ji Jiang, Xuehong Gu
Received:
2017-07-29
Revised:
2017-09-21
Online:
2017-11-28
Published:
2018-01-18
Contact:
Xuehong Gu,E-mail address:xhgu@njtech.edu.cn
Supported by:
Supported by the National Natural Science Foundation of China (21490585, 21606126), National High-tech R&D Program of China (2015AA03A602), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
摘要: Pervaporation (including vapor permeation) is a kind of new membrane separation technology, possessing the advantages of high efficiency, energy saving and convenient operation. It has promising application in the separation and purification of organic solvents. Dehydration is an important step in the production and recovery of organic solvents. Zeolite membranes have attracted wide attention for pervaporation dehydration due to their high separation performance and good thermal/chemical stability. So far, zeolite membranes have been preliminarily industrialized for dehydration of organic solvents. This paper reviews the recent development of zeolite membranes for pervaporation dehydration, including mass transfer models, preparation and applications of zeolite membranes. The review also discusses the current industrial applications of zeolite membranes and their future development in pervaporation.
Chun Zhang, Li Peng, Ji Jiang, Xuehong Gu. Mass transfer model, preparation and applications of zeolite membranes for pervaporation dehydration:A review[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1627-1638.
Chun Zhang, Li Peng, Ji Jiang, Xuehong Gu. Mass transfer model, preparation and applications of zeolite membranes for pervaporation dehydration:A review[J]. Chin.J.Chem.Eng., 2017, 25(11): 1627-1638.
[1] X. Feng, R.Y.M. Huang, Liquid separation by membrane pervaporation:a review, Ind. Eng. Chem. Res. 36(1997) 1048-1066.[2] W.H. Yuan, Y.S. Lin, W.S. Yang, Molecular sieving MFI-type zeolite membranes for pervaporation separation of xylene isomers, J. Am. Chem. Soc. 126(2004) 4776-4777.[3] T.C. Bowen, R.D. Noble, J.L. Falconer, Fundamentals and applications of pervaporation through zeolite membranes, J. Membr. Sci. 245(2004) 1-33.[4] P.D. Chapman, T. Oliveira, A.G. Livingston, K. Li, Membranes for the dehydration of solvents by pervaporation, J. Membr. Sci. 318(2008) 5-37.[5] J. Gascon, F. Kapteijn, B. Zornoza, V. Sebastián, C. Casado, J. Coronas, Practical approach to zeolitic membranes and coatings:state of the art, opportunities, barriers, and future perspectives, Chem. Mater. 24(2012) 2829-2844.[6] D.Z. Liu, Y.T. Zhang, J. Jiang, X.R. Wang, C. Zhang, X.H. Gu, High-performance NaA zeolite membranes supported on four-channel ceramic hollow fibers for ethanol dehydration, RSC Adv. 5(2015) 95866-95871.[7] Z.B. Wang, Q.Q. Ge, J. Shao, Y.S. Yan, High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition, J. Am. Chem. Soc. 131(2009) 6910-6911.[8] J. Caro, D. Albrecht, M. Noack, Why is it so extremely difficult to prepare shapeselective Al-rich zeolite membranes like LTA and FAU for gas separation? Sep. Purif. Technol. 66(2009) 143-147.[9] Y. Hasegawa, T. Nagase, Y. Kiyozumi, T. Hanaoka, F. Mizukami, Influence of acid on the permeation properties of NaA-type zeolite membranes, J. Membr. Sci. 349(2010) 189-194.[10] R.A. Rakoczy, Y. Traa, Nanocrystalline zeolite A:synthesis, ion exchange and dealumination, Microporous Mesoporous Mater. 60(2003) 69-78.[11] G.Q. Zhu, Y.S. Li, H. Zhou, J. Liu, W.S. Yang, Microwave synthesis of high performance FAU-type zeolite membranes:optimization, characterization and pervaporation dehydration of alcohols, J. Membr. Sci. 337(2009) 47-54.[12] X.R. Wang, Y. Chen, C. Zhang, X.H. Gu, N.P. Xu, Preparation and characterization of high-flux T-type zeolite membranes supported on YSZ hollow fibers, J. Membr. Sci. 455(2014) 294-304.[13] Y. Cui, H. Kita, K.-I. Okamoto, Zeolite T membrane:preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability, J. Membr. Sci. 236(2004) 17-27.[14] Z. Chen, J.H. Yang, D.H. Yin, Y.H. Li, S.F. Wu, J.M. Lu, J.Q. Wang, Fabrication of poly (1-vinylimidazole)/mordenite grafting membrane with high pervaporation performance for the dehydration of acetic acid, J. Membr. Sci. 349(2010) 175-182.[15] Z. Chen, D.H. Yin, Y.H. Li, J.H. Yang, J.M. Lu, Y. Zhang, J.Q. Wang, Functional defectpatching of a zeolite membranefor the dehydration of acetic acid bypervaporation, J. Membr. Sci. 369(2011) 506-513.[16] X.S. Li, H. Kita, H. Zhu, Z.J. Zhang, K. Tanaka, Synthesis of long-term acid-stable zeolite membranes and their potential application to esterification reactions, J. Membr. Sci. 339(2009) 224-232.[17] Y. Hasegawa, H. Hotta, K. Sato, T. Nagase, F. Mizukami, Preparation of novel chabazite (CHA)-type zeolite layer on porous α-Al2O3 tube using template-free solution, J. Membr. Sci. 347(2010) 193-196.[18] J. Jiang, X.R. Wang, Y.T. Zhang, D.Z. Liu, X.H. Gu, Fabrication of pure-phase CHA zeolite membranes with ball-milled seeds at low K+ concentration, Microporous Mesoporous Mater. 215(2015) 98-108.[19] R.F. Zhou, Y.Q. Li, B. Liu, N. Hu, X.S. Chen, H. Kita, Preparation of chabazite membranes by secondary growth using zeolite-T-directed chabazite seeds, Microporous Mesoporous Mater. 179(2013) 128-135.[20] Y. Hasegawa, C. Abe, F. Mizukami, Y. Kowata, T. Hanaoka, Application of a CHA-type zeolite membrane to the esterification of adipic acid with isopropyl alcohol using sulfuric acid catalyst, J. Membr. Sci. 415(2012) 368-374.[21] Y. Morigami, M. Kondo, J. Abe, H. Kita, K. Okamoto, The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane, Sep. Purif. Technol. 25(1-3) (2001) 251-260.[22] Y.S. Lin, M.C. Duke, Recent progress in polycrystalline zeolite membrane research, Curr. Opin. Chem. Eng. 2(2013) 209-216.[23] R.C. Binning, R.J. Lee, Separation of liquid mixtures by pervaporation, Ind. Eng. Chem. 53(1961) 45-54.[24] T. Okada, M. Yoshikawa, T. Matsuura, A study on the pervaporation of ethanol/water mixtures on the basis of pore flow mode, J. Membr. Sci. 107(1995) 1-21.[25] J.J. Shieh, R.Y.M. Huang, A pseudophase-change solution-diffusion model for pervaporation. Ⅱ. Binary mixture permeation, Sep. Sci. Technol. 33(1998) 933-957.[26] O. Kedem, The role of coupling in pervaporation, J. Membr. Sci. 47(1989) 277-285.[27] R. Krishna, L.J.P. Van den Broeke, The Maxwell-Stefan description of mass transport across zeolite membranes, Chem. Eng. J. 57(1995) 155-162.[28] R. Krishna, J.A. Wesselingh, The Maxwell-Stefan approach to mass transfer, Chem. Eng. Sci. 52(1997) 861-911.[29] F. Kapteijn, J.A. Moulijn, R. Krishna, The generalized Maxwell-Stefan model for diffusion in zeolites:sorbate molecules with different saturation loadings, Chem. Eng. Sci. 55(15) (2000) 2923-2930.[30] R. Krishna, R. Baur, Modelling issues in zeolite based separation processes, Sep. Purif. Technol. 33(2003) 213-254.[31] R. Krishna, Describing the diffusion of guest molecules inside porous structures, J. Phys. Chem. C 113(2009) 19756-19781.[32] R. Krishna,J.M. van Baten, A molecular dynamics investigation ofthe diffusion characteristics of cavity-type zeolites with 8-ring windows, Microporous Mesoporous Mater. 137(2011) 83-91.[33] R. Krishna, The Maxwell-Stefan description of mixture diffusion in nanoporous crystalline materials, Microporous Mesoporous Mater. 185(2014) 30-50.[34] A.H. Fuchs, A.K. Cheetham, Adsorption of guest molecules in zeolite materials:computational aspects, J. Phys. Chem. B 105(2001) 7375-7383.[35] R. Nagumo, H. Takaba, S. Suzuki, Estimation of inorganic gas permeability through an MFI-type silicalite membrane by a molecular simulation technique combined with permeation theory, Microporous Mesoporous Mater. 48(2001) 247-254.[36] G. Rutkai, E. Csanyi, T. Kristof, Prediction of adsorption and separation of water-alcohol mixtures with zeolite NaA, Microporous Mesoporous Mater. 114(2008) 455-464.[37] E. Csanyi, T. Kristof, G. Lendva, Potential model development using quantum chemical information for molecular simulation of adsorption equilibria of water-methanol (ethanol) mixtures in zeolite NaA-4, J. Phys. Chem. C 113(2009) 12225-12235.[38] J.Z. Yang, Q.L. Liu, H.T. Wang, Analyzing adsorption and diffusion behaviors of ethanol/water through silicalite membranes by molecular simulation, J. Membr. Sci. 291(2007) 1-9.[39] J.Y. Wu, Q.L. Liu, Y. Xiong, Molecular simulation of water/alcohol mixtures adsorption and diffusion in zeolite 4A membranes, J. Phys. Chem. B 113(2009) 4267-4274.[40] J. Kuhn, J.M. Castillo-Sanchez, J. Gascon, S. Calero, D. Dubbeldam, T.J.H. Vlugt, F. Kapteijn, J. Gross, Adsorption and diffusion of water, methanol, and ethanol in allsilica DD3R:experimentsand simulation, J. Phys. Chem. C 113(2009)14290-14301.[41] D.A. Lella, N. Desbiens, A. Boutin, I. Demachy, P. Ungerer, J.-P. Bellat, A.H. Fuchs, Molecular simulation studies of water physisorption in zeolite, Phys. Chem. Chem. Phys. 8(2006) 5396-5406.[42] S.Y. Guo, C.L. Yu, X.H. Gu, W.Q. Jin, J. Zhong, C.L. Chen, Simulation of adsorption, diffusion, and permeability of water and ethanol in NaA zeolite membranes, J. Membr. Sci. 376(2011) 40-49.[43] A. Gorbach, M. Stegmaier, G. Eigenberger, Measurement and modeling of water vapor adsorption on zeolite 4A-equilibria and kinetics, Adsorption10(2004) 29-46.[44] K.F. Loughlin, Water isotherm models for 4A (NaA) zeolite, Adsorption 15(2009) 337-353.[45] R. Krishna, D. Paschek, Self-diffusivities in multicomponent mixtures in zeolites, Phys. Chem. Chem. Phys. 4(10) (2002) 1891-1898.[46] R. Krishna, J.M. van Baten, Diffusion of alkane mixtures in zeolites:validating the Maxwell-Stefan formulation using MD simulations, J. Phys. Chem. B 109(2005) 6386-6396.[47] R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite:influence of intersection blocking, Chem. Eng. J. 140(2008) 614-620.[48] J.Z. Yang, Y. Chen, A.M. Zhu, Q.L. Liu, J.Y. Wu, Analyzing diffusion behaviors of methanol/water through MFI membranes by molecular simulation, J. Membr. Sci. 318(2008) 327-333.[49] W. Jia, S. Murad, Molecular dynamics simulation of pervaporation in zeolite membranes, Mol. Phys. 104(2006) 3033-3043.[50] D. Shen, W. Xiao, J.H. Yang, N.B. Chu, J.M. Lu, D.H. Yin, J.Q. Wang, Synthesis of silicalite-1 membrane with two silicon source by secondary growth method and its pervaporation performance, Sep. Purif. Technol. 26(2011) 309-315.[51] D. Kunnakorn, T. Rirksomboon, P. Aungkavattana, N. Kuanchertchoo, D. Atong, K. Hemra, S. Kulprathipanja, S. Wongkasemjit, Optimization of synthesis time for high performance of NaA zeolite membranes synthesized via autoclave for water-ethanol separation, Desalination 280(2011) 259-265.[52] V. Nikalakis, G. Xomeritakis, A. Abibi, M. Dickson, M. Tsapatsis, D.G. Vlachos, Growth of a faujasite-type zeolite membrane and its application in the separation of saturated/unsaturated hydrocarbon mixtures, J. Membr. Sci. 184(2001) 209-219.[53] S. Farooq, I.A. Karimi, Modeling support resistance in zeolite membranes, J. Membr. Sci. 186(2001) 109-121.[54] S.S. Madaeni, R. Pourghorbani, V. Vatanpour, Investigation of parameters affecting the flux of microfiltration poly(vinylidenefluoride) membranes for particulate removal, Adv. Polym. Technol. 31(2012) 29-40.[55] F.T. de Bruijn, L. Sun, Z. Olujic, P.J. Jansens, F. Kapteijn, Influence of the support layer on the flux limitation in pervaporation, J. Membr. Sci. 223(2003) 141-156.[56] J.Shao,Z.Y. Zhan,J.G.Li,Z.B.Wang,K. Li,Y.S. Yan, ZeoliteNaA membranessupported on alumina hollow fibers:effect of support resistances on pervaporation performance, J. Membr. Sci. 451(2014) 10-17.[57] U. Beuscher, C.H. Gooding, The permeation of binary gas mixtures through support structures of composite membranes, J. Membr. Sci. 150(1998) 57-73.[58] U. Beuscher, C.H. Gooding, The influence of the porous support layer of composite membranes on the separation of binary gas mixtures, J. Membr. Sci. 152(1999) 99-116.[59] J. Zah, H.M. Krieg, J.C. Breytenbach, Pervaporation and related properties of timedependent growth layers of zeolite NaA on structured ceramic supports, J. Membr. Sci. 284(2006) 276-290.[60] K. Okamoto, H. Kita, K. Horii, K. Tanaka, M. Kondo, Zeolite NaA membrane:Preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures, Ind. Eng. Chem. Res. 40(2001) 163-175.[61] Z.T. Wu, I.M.D. Hatim, B.F.K. Kingsbury, E. Gbenedio, K. Li, A novel inorganic hollow fiber membrane reactor for catalytic dehydrogenation of propane, AIChE J. 55(2009) 2389-2398.[62] F.R. Garcia-Garcia, K. Li, New catalytic reactors prepared from symmetric and asymmetric ceramic hollow fibers, Appl. Catal. A Gen. 456(2013) 1-10.[63] P. Ye, Y.T. Zhang, H.F. Wu, X.H. Gu, Mass transfer simulation on pervaporation dehydration of ethanol through hollow fiber NaA zeolite membranes, AIChE J. 62(7) (2016) 2468-2478.[64] N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Zeolite membranes-a review and comparison with MOFs, Chem. Soc. Rev. 44(2015) 7128-7154.[65] A.S. Huang, J. Caro, Facile synthesis of LTA molecular sieve membranes on covalently functionalized supports by using diisocyanates as molecular linkers, J. Mater. Chem. 21(2011) 11424-11429.[66] S.L. Wee, C.T. Tye, S. Bhatia, Membrane separation process-pervaporation through zeolite membrane, Sep. Purif. Technol. 63(3) (2008) 500-516.[67] Y.M. Liu, Z.Z. Yang, C.L. Yu, X.H. Gu, N.P. Xu, Effect of seeding methods on growth of NaA zeolite membranes, Microporous Mesoporous Mater. 143(2) (2011) 348-356.[68] Z.Z. Yang, Y.M. Liu, C.L. Yu, X.H. Gu, N.P. Xu, Ball-milled NaA zeolite seeds with submicron size for growth of NaA zeolite membranes, J. Membr. Sci. 392(2012) 18-28.[69] X.R. Wang, Z.Z. Yang, C.L. Yu, L.W. Yin, C. Zhang, X.H. Gu, Preparation of T-type zeolite membranes using a dip-coating seeding suspension containing colloidal SiO2, Microporous Mesoporous Mater. 197(2014) 17-25.[70] L.Q. Li, J.H. Yang, J.J. Li, J.Q. Wang, J.M. Lu, D.H. Yin, Y. Zhang, High performance ZSM-5 membranes on coarse macroporous α-Al2O3 supports for dehydration of alcohols, AIChE J. (2016).[71] H.Z. Li, J.Q. Wang, J. Xu, X.D. Meng, B. Xu, J.H. Yang, S.Y. Li, J.M. Lu, Y. Zhang, X.L. He, Synthesis of zeolite NaA membranes with high performance and high reproducibility on coarse macroporous supports, J. Membr. Sci. 444(2013) 513-522.[72] X.X. Chen, J.Q. Wang, D.H. Yin, J.H. Yang, J.M. Lu, Y. Zhang, Z. Chen, Highperformance zeolite T membrane for dehydration of organics by a new varying temperature hot-dip coating method, AIChE J. 59(3) (2013) 936-947.[73] L.Q.Li,J.H. Yang,J.J. Li, P. Han, J.X.Wang, Y. Zhao, J.Q. Wang,J.M. Lu, D.H. Yin, Y. Zhang, Synthesis of high performance mordenite membranes from fluoride-containing dilute solution under microwave-assisted heating, J. Membr. Sci. 512(2016) 83-92.[74] Y.M. Liu, X.R. Wang, Y.T. Zhang, Y. He, X.H. Gu, Scale-up of NaA zeolite membranes on α-Al2O3 hollow fibers by a secondary growth method with vacuum seeding, Chin. J. Chem. Eng. 23(7) (2015) 1114-1122.[75] C. Cai, Y.T. Zhang, C. Zhang, X.H. Gu, Microstructure modulation of α-Al2O3 hollow fiber membranes with four-channel geometric configuration, Asia Pac. J. Chem. Eng. 11(2016) 949-957.[76] Z.Z. Shi, Y.T. Zhang, C. Cai, C. Zhang, X.H. Gu, Preparation and characterization of α-Al2O3 hollow fiber membranes with four-channel configuration, Ceram. Int. 41(2015) 1333-1339.[77] M. Lee, Z.T. Wu, B. Wang, K. Li, Micro-structured alumina multi-channel capillary tubes and monoliths, J. Membr. Sci. 489(2015) 64-72.[78] Y. Chen, Y.T. Zhang, C. Zhang, J. Jiang, X.H. Gu, Fabrication of high-flux SAPO-34 membrane on α-Al2O3 four-channel hollow fibers for CO2 capture from CH4, J. CO2 Util. 18(2017) 30-40.[79] M. Tsapatsis, Toward high-throughput zeolite membranes, Science 334(6057) (2011) 767-768.[80] K.B. Yoon, Organization of zeolite microcrystals for production of functional materials, Acc. Chem. Res. 40(1) (2007) 29-40.[81] Y.S. Chun, K. Ha, Y.J. Lee, J.S. Lee, H.S. Kim, Y.S. Park, K.B. Yoon, Diisocyanates as novel molecular binders for monolayer assembly of zeolite crystals on glass, Chem. Commun. 17(2002) 1846-1847.[82] B. Elyassi, M.Y. Jeon, M. Tsapatsi, K. Narasimharao, S.N. Basahel, S. Al-Thabiaiti, Ethanol/water mixture pervaporation performance of b-oriented silicalite-1 membranes made by gel-free secondary growth, AIChE J. 62(2) (2016) 556-563.[83] Y.S. Li, W.S. Yang, Microwave synthesis of zeolite membranes:a review, J. Membr. Sci. 316(1) (2008) 3-17.[84] Y.S. Li, J. Liu, W.S. Yang, Formation mechanism of microwave synthesized LTA zeolite membranes, J. Membr. Sci. 281(1) (2006) 646-657.[85] J. Motuzas, S. Heng, P.P.S.Z. Lau, K.L. Yeung, Z.J. Beresnevicius, A. Julbe, Ultra-rapid production of MFI membranes by coupling microwave-assisted synthesis with either ozone or calcination treatment, Microporous Mesoporous Mater. 99(1) (2007) 197-205.[86] S. Mintova, S. Mo, T. Bein, Nanosized AlPO4-5 molecular sieves and ultrathin films prepared by microwave synthesis, Chem. Mater. 10(12) (1998) 4030-4036.[87] K. Weh, M. Noack, I. Sieber, J. Caro, Permeation of single gases and gas mixtures through faujasite-type molecular sieve membranes, Microporous Mesoporous Mater. 54(1) (2002) 27-36.[88] X.C. Xu, Y. Bao, C.S. Song, W.S. Yang, J. Liu, L.W. Lin, Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane, Microporous Mesoporous Mater. 75(3) (2004) 173-181.[89] N. Hu, Y.Q. Li, S.L. Zhong, B. Wang, F. Zhang, T. Wu, Z. Yang, R.F. Zhou, X.S. Chen, Microwave synthesis of zeolite CHA (chabazite) membranes with high pervaporation performanceinabsenceoforganicstructuredirectingagents, Microporous Mesoporous Mater. 228(2016) 22-29.[90] D. Coutinho, J.A. Losilla, K.J. Balkus, Microwave synthesis of ETS-4 and ETS-4 thin films, Microporous Mesoporous Mater. 90(1) (2006) 229-236.[91] C.L. Yu, Y.M. Liu, G.L. Chen, X.H. Gu, W.H. Xing, Pretreatment of isopropanol solution from pharmaceutical industry and pervaporation dehydration by NaA zeolite membranes, Chin. J. Chem. Eng. 19(6) (2011) 904-910.[92] J.H. Yang, H.Z. Li, J. Xu, J.Q. Wang, X.D. Meng, K. Bai, J.M. Lu, Y. Zhang, D.H. Yin, Influences of inorganic salts on the pervaporation properties of zeolite NaA membranes on macroporous supports, Microporous Mesoporous Mater. 192(2014) 60-68.[93] Y.S. Li, H. Zhou, G.Q. Zhu, J. Liu, W.S. Yang, Hydrothermal stability of LTA zeolite membranes in pervaporation, J. Membr. Sci. 297(1) (2007) 10-15.[94] C.L. Yu, C. Zhong, Y.M. Liu, X.H. Gu, W.H. Xing, N.P. Xu, Pervaporation dehydration of ethylene glycol by NaA zeolite membranes, Chem. Eng. Res. Des. 90(2012) 1372.[95] X.S. Cai, Y.T. Zhang, L.W. Yin, D.D. Ding, W.H. Jing, X.H. Gu, Electrochemical impedance spectroscopy for analyzing microstructure evolution of NaA zeolite membrane in acid water/ethanol solution, Chem. Eng. Sci. 153(2016) 1-9.[96] K. Tanaka, R. Yoshikawa, C. Ying, H. Kita, K.-I. Okamoto, Application of zeolite membranes to esterification reactions, Catal. Today 67(1-3) (2001) 121-125.[97] K. Tanaka, R. Yoshikawa, C. Ying, H. Kita, K.-I. Okamoto, Application of zeolite T membrane to vapor-permeation-aided esterification of lactic acid with ethanol, Chem. Eng. Sci. 57(9) (2002) 1577-1584.[98] Y. Hasegawa, C. Abe, M. Nishioka, K. Sato, T. Nagase, T. Hanaoka, Formation of high flux CHA-type zeolite membranes and their application to the dehydration of alcohol solutions, J. Membr. Sci. 364(1) (2010) 318-324.[99] J. Jiang, L. Wang, L. Peng, C. Cai, C. Zhang, X.R. Wang, X.H. Gu, Preparation and characterization of high performance CHA zeolite membranes from clear solution, J. Membr. Sci. 527(2017) 51-59.[100] K. Sato, K. Sugimoto, N. Shimotsuma, T. Kikuchi, T. Kyotani, T. Kurata, Development of practically available up-scaled high-silica CHA-type zeolite membranes for industrial purpose in dehydration of N-methyl pyrrolidone solution, J. Membr. Sci. 409(2012) 82-95.[101] N. Yamanaka, M. Itakura, Y. Kiyozumi, Y. Ide, M. Sadakane, T. Sano, Acid stability evaluation of CHA-type zeolites synthesized by interzeolite conversion of FAUtype zeolite and their membrane application for dehydration of acetic acid aqueous solution, Microporous Mesoporous Mater. 158(2012) 141-147.[102] Z. Chen, Y.H. Li, D.H. Yin, Y.M. Song, X.X. Ren, J.M. Lu, J.H. Yang, J.Q. Wang, Microstructural optimization of mordenite membrane for pervaporation dehydration of acetic acid, J. Membr. Sci. 411-412(2012) 182-192.[103] M.H. Zhu, S.L. Xia, X.M. Hua, Z.J. Feng, N. Hu, F. Zhang, I. Kumakiri, Z.H. Lu, X.S. Chen, H. Kita, Rapid preparation of acid-stable and high dehydration performance mordenite membranes, Ind. Eng. Chem. Res. 53(2014) 19168-19174.[104] S.G. Sorenson, E.A. Payzant, W.T. Gibbons, B. Soydas, H. Kita, R.D. Noble, J.L. Falconer, Influence of zeolite crystal expansion/contraction on NaA zeolite membrane separations, J. Membr. Sci. 366(2011) 413-420.[105] F.Y. Qu, R. Shi, L. Peng, Y.T. Zhang, X.H. Gu, X.Y. Wang, S. Murad, Understanding the effect of zeolite crystal expansion/contraction on separation performance of NaA zeolite membrane:a combined experimental and molecular simulation study, J. Membr. Sci. 539(2017) 14-23.[106] A. Jonquières, R. Clément, P. Lochon, J. Néel, M. Dresch, B. Chrétien, Industrial stateof-the-art of pervaporation and vapour permeation in the western countries, J. Membr. Sci. 206(2002) 87-117.[107] J. Caro, M. Noack, Zeolite membranes-recent developments and progress, Microporous Mesoporous Mater. 115(2008) 215-233.[108] M.P. Pina, R. Mallada, M. Arruebo, M. Urbiztondo, N. Navascués, O. de la Iglesia, J. Santamaria, Zeolite films and membranes. Emerging applications, Microporous Mesoporous Mater. 144(2011) 19-27.[109] B. Bolto, M. Hoang, Z.L. Xie, A review of water recovery by vapour permeation through membranes, Water Res. 46(2012) 259-266.[110] V. Hoof, C. Dotremont, A. Buekenhoudt, Performance of Mitsui NaA type zeolite membranes for the dehydration of organic solvents in comparison with commercial polymeric pervaporation membranes, Sep. Purif. Technol. 48(2006) 304-309.[111] S. Sommer, T. Melin, Influence of operation parameters on the separation of mixtures by pervaporation and vapor permeation with inorganic membranes. Part 1:dehydration of solvents, Chem. Eng. Sci. 60(2005) 4509-4523.[112] K. Sato, K. Sugimoto, T. Nakane, Preparation of higher flux NaA zeolite membrane on asymmetric porous support and permeation behavior at higher temperatures up to 145℃ in vapor permeation, J. Membr. Sci. 307(2008) 181-195.[113] K.Sato,K.Aoki,K.Suimoto,K.Izumi,S.Inoue,J.Saito,S. Ikeda, T.Nakane,Dehydrating performance of commercial LTA zeolite membranes and application to fuel grade bio-ethanolproductionbyhybriddistillation/vaporpermeationprocess, Microporous Mesoporous Mater. 115(2008) 184-188.[114] S. Sommer, T. Melin, Performance evaluation of microporous inorganic membranes in the dehydration of industrial solvents, Chem. Eng. Process. 44(2005) 1138-1156.[115] R.F. Zhou, L.L. Hu, Y.J. Zhang, N. Hu, X.S. Chen, X. Lin, H. Kita, Synthesis of oriented zeolite T membranes from clear solutions and their pervaporation properties, Microporous Mesoporous Mater. 174(2013) 81-89.[116] H. Zhou, Y.S. Li, G.Q. Zhu, J. Liu, L.W. Lin, W.S. Yan, Microwave synthesis of a&boriented zeolite t membranes and their application in pervaporation-assisted esterification, Chin. J. Catal. 29(7) (2008) 592-594.[117] H.T. Truong, S. Rode, D. Roizard, S. Mouzon-Pelletier, S. Tretjak, Dehydration of reactive industrial mixtures by pervaporation:an innovative approach in acrylic esters processes, Sep. Purif. Technol. 120(2013) 24-34.[118] H. Kalipcilar, T.C. Bowen, R.D. Noble, L. Falconer, Synthesis and separation performance of SSZ-13 zeolite membranes on tubular supports, Chem. Mater. 14(8) (2002) 3458-3464. |
[1] | Bo Yu, Guang Fu, Xinpei Li, Libo Zhang, Jing Li, Hongtao Qu, Dongbin Wang, Qingfeng Dong, Mengmeng Zhang. Arsenic removal from acidic industrial wastewater by ultrasonic activated phosphorus pentasulfide[J]. 中国化学工程学报, 2023, 60(8): 46-52. |
[2] | Anjun Liu, Jie Chen, Meng Guo, Chengmin Chen, Meihong Yang, Chao Yang. The internal circulations on internal mass transfer rate of a single drop in nonlinear uniaxial extensional flow[J]. 中国化学工程学报, 2023, 59(7): 51-60. |
[3] | Meihua Zhu, Xingguo An, Tian Gui, Ting Wu, Yuqin Li, Xiangshu Chen. Effects of ion-exchange on the pervaporation performance and microstructure of NaY zeolite membrane[J]. 中国化学工程学报, 2023, 59(7): 176-181. |
[4] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture[J]. 中国化学工程学报, 2023, 56(4): 273-280. |
[5] | Ming Chen, Huiyan Jiao, Jun Li, Zhibin Wang, Feng He, Yang Jin. Liquid–liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance[J]. 中国化学工程学报, 2023, 56(4): 281-289. |
[6] | Wen Tian, Junyi Ji, Hongjiao Li, Changjun Liu, Lei Song, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Measurements of the effective mass transfer areas for the gas–liquid rotating packed bed[J]. 中国化学工程学报, 2023, 55(3): 13-19. |
[7] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer[J]. 中国化学工程学报, 2023, 55(3): 84-92. |
[8] | Qinyan Wang, Yang Jin, Jun Li, Yongbo Zhou, Ming Chen. Study on liquid–liquid two-phase mass transfer characteristics in the microchannel with deformed insert[J]. 中国化学工程学报, 2023, 54(2): 114-126. |
[9] | Qinggang Xu, Yasen Dai, Qing Zhao, Zhengrun Chen, Peizhe Cui, Zhaoyou Zhu, Yinglong Wang, Jun Gao, Yixin Ma. Economy, environmental assessment and energy conservation for separation of isopropanol/diisopropyl ether/water multi-azeotropes via extractive distillation coupled pervaporation process[J]. 中国化学工程学报, 2023, 54(2): 353-363. |
[10] | Huan Xiang, Huiping Zhang, Pengfei Liu, Ying Yan. Adsorption dynamics of ethane from air in structured fixed beds with different microfibrous composites[J]. 中国化学工程学报, 2023, 53(1): 14-24. |
[11] | Zhiwei Wang, Yu Zhang, Zhi Zhang, Daowei Zhou, Zhikai Cao, Yong Sha. Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures[J]. 中国化学工程学报, 2023, 53(1): 63-72. |
[12] | Monique Juna L. Leite, Ingrid Ramalho Marques, Mariane Carolina Proner, Pedro H.H. Araújo, Alan Ambrosi, Marco Di Luccio. Catalytically active membranes for esterification: A review[J]. 中国化学工程学报, 2023, 53(1): 142-154. |
[13] | Ting He, Songhong Yu, Jinhui He, Dejian Chen, Jie Li, Hongjun Hu, Xingrui Zhong, Yawei Wang, Zhaohui Wang, Zhaoliang Cui. Membranes for extracorporeal membrane oxygenator (ECMO): History, preparation, modification and mass transfer[J]. 中国化学工程学报, 2022, 49(9): 46-75. |
[14] | Zhi-Guo Yuan, Yu-Xia Wang, You-Zhi Liu, Dan Wang, Wei-Zhou Jiao, Peng-Fei Liang. Research and development of advanced structured packing in a rotating packed bed[J]. 中国化学工程学报, 2022, 49(9): 178-186. |
[15] | Xing Su, Ning Qiao, Bao-Chang Sun. A route for the study on mass transfer enhancement by adding particles in liquid phase[J]. 中国化学工程学报, 2022, 48(8): 158-165. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||