[1] E.D. Sloan, Fundamental principles and applications of natural gas hydrates, Nat. Publ. Group 426(6964) (2003) 353-359.[2] E.D. Sloan, C.A. Koh, A.K. Sum, Natural Gas Hydrates in Flow Assurance, Gulf Professional Publishing (Elsevier), Oxford, U.K., 2010[3] E.G. Hammerschmidt, Formation of gas hydrates in natural gas transmission lines, Ind. Eng. Chem. 26(8) (1934) 851-855.[4] E.D. Sloan, Clathrate Hydrate of Natural Gases, second ed. Marcel Dekker, New York, 1998 Cap. 2455-464.[5] Y.H. Sohn, J. Kim, K. Shin, D. Chang, Y. Seo, Z. Aman, E.F. May, Hydrate plug formation risk with varying watercut and inhibitor concentrations, Chem. Eng. Sci. 126(2015) 711-718.[6] X. Li, C. Chen, Y. Chen, Y. Li, H. Li, Kinetics of methane clathrate hydrate formation in water-in-oil emulsion, Energy Fuel 29(4) (2015) 2277-2288.[7] E. Jassim, M.A. Abdi, Y. Muzychka, A new approach to investigate hydrate deposition in gas-dominated flowlines, J. Nat. Gas Sci. Eng. 2(2010) 163-177.[8] E. Kim, S. Lee, D.L. Ju, Y.W. Seo, Influences of large molecular alcohols on gas hydrates and their potential role in gas storage and CO2 sequestration, Chem. Eng. J. 267(2015) 117-123.[9] S.V. Joshi, G.A. Grasso, P.G. Lafond, I. Rao, E. Webb, L.E. Zerpa, E.D. Sloan, C.A. Koh, A.K. Sum, Experimental flowloop investigations of gas hydrate formation in high water cut systems, Chem. Eng. Sci. 97(2013) 198-209.[10] M.W. Sun, A. Firoozabadi, G.J. Chen, C.Y. Sun, Hydrate size measurements in antiagglomeration at high watercut by new chemical formulation, Energy Fuel 29(2015) 2901-2905.[11] M.A. Kelland, History of the development of low dosage hydrate inhibitors, Energy Fuel 20(2006) 825-847.[12] L.D. Villano, M.A. Kelland, An investigation into the laboratory method for the evaluation of the performance of kinetic hydrate inhibitors using superheated gas hydrates, Chem. Eng. Sci. 66(2011) 1973-1985.[13] X. Zhao, Z.S. Qiu, W. Huang, Characterization of kinetics of hydrate formation in the presence of kinetic hydrate inhibitors during deepwater drilling, J. Nat. Gas Sci. Eng. 22(2015) 270-278.[14] G.C. Song, Y.X. Li, W.C. Wang, K. Jiang, X. Ye, P.F. Zhao, Investigation of hydrate plugging in natural gas + diesel oil + water systems using a high-pressure flow loop, Chem. Eng. Sci. 158(2017) 480-489.[15] P. Chen, W.F. Liu, Y.X. Li, W.C. Wang, H.H. Liu, Q.D. Zhang, Numerical simulation of hydrate slurry flow behavior, Oil Gas Storage Transp. 32(2) (2014) 160-164(in Chinese).[16] A. Cameirao, A. Fezoua, Y. Ouabbas, J.M. Herri, M. Darbouret, A. Sinquin, P. Glenat, Agglomeration of gas hydrate in a water-in-oil emulsion:experimental and modeling studies, Proceedings of the 7th International Conference on Gas Hydrates, Edinburgh, United Kingdom, 2011.[17] L.E. Dieker, Z.M. Aman, N.C. George, A.K. Sum, E.D. Sloan, C.A. Koh, Micromechanical adhesion force measurements between hydrate particles in hydrocarbon oils and their modifications, Energy Fuel 23(2009) 5966-5971.[18] K.Muhle, Flockstability inlaminar and turbulent flow, CoagulationandFlocculation:Theory and Applications, Marcel Dekker, New York, U.S.A., 1996[19] R. Camargo, T. Palermo, Rheological properties of hydrate suspensions in an asphaltenic crude oil, Proceedings of the 4th International Conference on Gas Hydrates, Yokohama, Japan, 2002.[20] W.C. Wang, Y.X. Li, H.H. Liu, P.F. Zhao, Study of agglomeration characteristics of hydrate particles in oil/gas pipelines, Adv. Mech. Eng. 7(1) (2014) 457050.[21] E. Colombel, P. Gateau, L. Barre, F. Gruy, T. Palermo, Discussion of agglomeration mechanisms between hydrate particles in water in oil emulsions, Oil Gas Sci. Technol. 64(5) (2009) 629-636.[22] A. Fidel-Dufour, F. Gruy, J.M. Herri, Rheology of methane hydrate slurries during their crystallization in a water in dodecane emulsion under flowing, Chem. Eng. Sci. 61(2) (2006) 505-515.[23] B.V. Balakin, A.C. Hoffmann, P. Kosinski, Population balance model for nucleation, growth, aggregation, and breakage of hydrate particles in turbulent flow, AICHE J. 56(8) (2010) 2052-2062.[24] P. Doron, D. Barnea, Pressure drop and limit deposit velocity for solid-liquid flow in pipes, Chem. Eng. Sci. 50(10) (1995) 1595-1604.[25] R.T. Zhou, J.H. Chen, N. Yang, J.H. Li, A. Fernandez, P. Ricoux, Modeling of complex liquid-solid flow of particle swelling in slurry loop reactors, Chem. Eng. Sci. 176(2018) 476-490.[26] E.D. Fatnes, Numerical simulations of the flow and plugging behavior of hydrate particles, PhD Thesis, University of Bergen, Bergen, 2010.[27] B.V. Balakin, A.C. Hoffmann, P. Kosinski, Experimental study and computational fluid dynamics modeling of deposition of hydrate particles in a pipeline with turbulent water flow, Chem. Eng. Sci. 66(4) (2011) 755-765.[28] B.V. Balakin, S. Lo, P. Kosinski, A.C. Hoffmann, Modelling agglomeration and deposition of gas hydrates in industrial pipelines with combined CFD-PBM technique, Chem. Eng. Sci. 153(2016) 45-57.[29] H.M. Hulburt, S. Katz, Some problems in particle technology:a statistical mechanical formulation, Chem. Eng. Sci. 19(8) (1964) 555-574.[30] N.Q.X. Yang, A mesoscale approach for population balance modeling of bubble size distribution in bubble column reactors, Chem. Eng. Sci. 170(2017) 241-250.[31] D. Xu, Z.Q. Liu, L.L. Cai, Y.F. Tang, Y.X. Xu, A.X. Xu, A CFD-PBM approach for modeling ice slurry flow in horizontal pipes, Chem. Eng. Sci. 176(2018) 546-559.[32] D. Ramkrishna, Population Balances:Theory and Applications to Particulate Systems in Engineering, Academic Press, London, 2000.[33] C.J. Meyer, D.A. Deglon, Particle collision modeling-A review, Miner. Eng. 24(2011) 719-730.[34] M.V. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kol-loider Losungen, Ann. Phys. 270(5) (1917) 222-240.[35] T.R. Camp, P.C. Stein, Velocity gradients and internal work in fluid motion, J. Boston Soc. Civ. Eng. 30(4) (1943) 219-237.[36] P.G. Saffman, J.S. Turner, On the collision of drops in turbulent clouds, J. Fluid Mech. 1(1) (1956) 16-30.[37] J. Abrahamson, Collision rates of small particles in a vigorously turbulent fluid, Chem. Eng. Sci. 30(11) (1975) 1371-1379.[38] G.A. Grasso, Investigation of hydrate formation and transportability in multiphase flow systems, PhD Thesis, Colorado School of Mines, 2015.[39] X.Y. Li, B.E. Logan, Collision frequencies between fractal aggregates and small particles in a turbulent sheared fluid, Environ. Sci. Technol. 31(1997) 1237-1242.[40] T.G.M.V.D. Ven, S.G. Mason, The microrheology of colloidal dispersions VⅡ. Orthokinetic doublet formation of spheres, Colloid Polym. Sci. 255(5) (1977) 468-479.[41] M.R. Anklam, J.D. York, L. Helmerich, A. Firoozabadi, Effects of antiagglomerants on the interactions between hydrate particles, AICHE J. 54(2) (2008) 565-574.[42] J.W. Nicholas, L.E. Dieker, L. Nuebling, B. Horn, H. He, C.A. Koh, E.D. Sloan, Proceedings of the 6th International Conference on Gas Hydrates, Vancouver, Canada, 2008.[43] J.A. Boxall, C.A. Koh, E.D. Sloan, A.K. Sum, D.T. Wu, Droplet size scaling of water-in-oil emulsions under turbulent flow, Langmuir 28(2012) 104-110.[44] T. Serra, X. Casamitjana, Modelling the aggregation and break-up of fractal aggregates in a shear flow, Flow Turbul. Combust. 59(2) (1997) 255-268.[45] F. Maggi, Flocculation dynamics of cohesive sediment, PhD Thesis, Delft University of Technology, Delft, 2005.[46] J.J. Zhang, X.Y. Li, Modeling particle-size distribution dynamics in a flocculation system, AICHE J. 49(7) (2003) 1870-1882.[47] B.V. Balakin, H. Pedersen, Z. Kilinc, A.C. Hoffmann, P. Kosinski, S. Hoiland, Turbulent flow of freon R11 hydrate slurry, J. Pet. Sci. Eng. 70(3-4) (2010) 177-182.[48] J. Ding, D. Gidaspow, A bubbling fluidization model using kinetic theory of granular flow, AICHE J. 36(4) (1990) 523-538.[49] W. Pabst, Fundamental considerations on suspension rheology, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 48(1) (2004) 6-13.[50] T. Kimura, M. Nakamura, Time dependence of rheological properties and particle aggregation structure of fine particles in a slurry, J. Res. Assoc. Powder Technol. Jpn 27(2010) 597-602.[51] J.C. Cheng, C. Yang, Z.S. Mao, CFD-PBE simulation of premixed continuous precipitation incorporating nucleation, growth and aggregation in a stirred tank with multiclass method, Chem. Eng. Sci. 68(2012) 469-480.[52] M.A. Clarke, P.R. Bishnoi, Determination of the intrinsic rate constant and activation energy of CO2 gas hydrate decomposition using in-situ particle size analysis, Chem. Eng. Sci. 59(14) (2004) 2983-2993. |