[1] Z. Yin, Y. Zheng, H. Wang, J. Li, Q. Zhu, Y. Wang, N. Ma, G. Hu, B. He, A. Knop-Gericke, R. Schlogl, D. Ma, Engineering interface with one-dimensional Co3O4 nanostructure in catalytic membrane electrode:Toward an advanced electrocatalyst for alcohol oxidation, ACS Nano 11(2017) 12365-12377.[2] D. Li, C. Gu, F. Han, Z. Zhong, W. Xing, Catalytic performance of hybrid Pt@ZnO NRs on carbon fibers for methanol electro-oxidation, Chin. J. Chem. Eng. 25(2017) 1871-1876.[3] Y. Yang, J. Li, H. Wang, X. Song, T. Wang, B. He, X. Liang, H.H. Ngo, An Electrocatalytic membrane reactor with self-cleaning function for industrial wastewater treatment, Angew. Chem. Int. Ed. 50(2011) 2148-2150.[4] Y. Yang, H. Wang, J. Li, B. He, T. Wang, S. Liao, Novel functionalized nano-TiO2 loading electrocatalytic membrane for oily wastewater treatment, Environ. Sci. Technol. 46(2012) 6815-6821.[5] A. Xu, W. Han, J. Li, X. Sun, J. Shen, L. Wang, Electrogeneration of hydrogen peroxide using Ti/IrO2-Ta2O5 anode in dual tubular membranes electro-Fenton reactor for the degradation of tricyclazole without aeration, Chem. Eng. J. 295(2016) 152-159.[6] H. Wang, H. Wang, J. Li, D. Bin, Z. Yin, J. Kang, B. He, An electrocatalytic reactor for the high selectivity production of sodium 2,2,3,3-tetrafluoropropionate from 2,2,3,3-tetrafluoro-1-propanol, Electrochim. Acta 123(2014) 33-41.[7] D. Bin, H. Wang, J. Li, H. Wang, Z. Yin, J. Kang, B. He, Z. Li, Controllable oxidation of glucose to gluconic acid and glucaric acid using an electrocatalytic reactor, Electrochim. Acta 130(2014) 170-178.[8] Y. Zhang, K. Wei, W. Han, X. Sun, J. Li, J. Shen, L. Wang, Improved electrochemical oxidation of tricyclazole from aqueous solution by enhancing mass transfer in a tubular porous electrode electrocatalytic reactor, Electrochim. Acta 189(2016) 1-8.[9] M.H. Schnoor, C.D. Vecitis, Quantitative examination of aqueous ferrocyanide oxidation in a carbon nanotube electrochemical filter:Effects of flow rate, ionic strength, and cathode material, J. Phys. Chem. C 117(2013) 2855-2867.[10] H. Wang, Q. Guan, J. Li, T. Wang, Phenolic wastewater treatment by an electrocatalytic membrane reactor, Catal. Today 236(2014) 121-126.[11] X. Wei, H. Wang, Z. Yin, S. Qaseem, J. Li, Tubular electrocatalytic membrane reactor for alcohol oxidation:CFD simulation and experiment, Chin. J. Chem. Eng. 25(2016) 18-25.[12] M.F. Dupont, S.W. Donne, A step potential electrochemical spectroscopy analysis of electrochemical capacitor electrode performance, Electrochim. Acta 167(2015) 268-277.[13] X. Niu, M. Lan, H. Zhao, C. Chen, Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures, Anal. Chem. 85(2013) 3561-3569.[14] Y. Huang, H. Yan, Y. Tong, Electrocatalytic determination of reduced glutathione using rutin as a mediator at acetylene black spiked carbon paste electrode, J. Electroanal. Chem. 743(2015) 25-30.[15] H. Liu, C.D. Vecitis, Reactive transport mechanism for organic oxidation during electrochemical filtration:Mass-transfer, physical adsorption, and electron-transfer, J. Phys. Chem. C 116(2012) 374-383.[16] J. Li, J. Li, H. Feng, Y. Zhang, J. Jiang, Y. Feng, M. Chen, D. Qian, A facile one-step in situ synthesis of copper nanostructures/graphene oxide as an efficient electrocatalyst for 2-naphthol sensing application, Electrochim. Acta 153(2015) 352-360.[17] A. Hassanzadeh, M.H. Habibi, A. Zeini-Isfahani, Study of electronic structure of tindoped In2O3(ITO) film deposited on glass, Acta Chim. Slov. 51(2004) 507-527.[18] S.H. Du, L.Q. Wang, X.T. Fu, M.M. Chen, C.Y. Wang, Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical doublelayer capacitors, Bioresour. Technol. 139(2013) 406-409.[19] M. Kim, I. Oh, J. Kim, Hierarchical porous silicon carbide with controlled micropores and mesopores for electric double layer capacitors, J. Power Sources 282(2015) 277-285.[20] A.J. Brad, L.R. Faulkner, Electrochemical Methods:Fundamentals and Applications, Wiley, 1980.[21] K.M. Lin, K.H. Chang, C.C. Hu, Y.Y. Li, Mesoporous RuO for the next generation supercapacitors with an ultrahigh power density, Electrochim. Acta 54(2009) 4574-4581.[22] S. Ardizzone, G. Fregonara, S. Trasatti, "Inner" and "outer" active surface of RuO2 electrodes, Electrochim. Acta 35(1990) 263-267.[23] S.H. Kazemi, A. Asghari, M.A. Kiani, High performance supercapacitors based on the electrodeposited Co3O4 nanoflakes on electro-etched carbon fibers, Electrochim. Acta 138(2014) 9-14.[24] H.D. Yoo, J.H. Jang, H.R. Ji, Y. Park, S.M. Oh, Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors, J. Power Sources 267(2014) 411-420.[25] S. Emin, M. Fanetti, F.F. Abdi, D. Lisjak, M. Valant, d.K.R. Van, B. Dam, Photoelectrochemical properties of cadmium chalcogenide-sensitized textured porous zinc oxide plate electrodes, ACS Appl. Mater. Interfaces 5(2013) 1113-1121.[26] C.-T. Hsieh, S.-M. Hsu, J.-Y. Lin, H. Teng, Electrochemical capacitors based on graphene oxide sheets using different aqueous electrolytes, J. Phys. Chem. C 115(2011) 12367-12374.[27] A. Cojocaru, M. Sima, Electrochemical investigation of the deposition/dissolution of selenium in choline chloride with urea or ethylene glycol ionic liquids, Rev. Chim. 63(2012) 217-223.[28] C.M.A. Brett, A.M.O. Brett, Physical Electrochemistry:Principles, Methods, and Applications, Oxford Press, 1993.[29] A.N. Colli, J.M. Bisang, The effect of a perpendicular and cumulative inlet flow on the mass-transfer distribution in parallel-plate electrochemical reactors, Electrochim. Acta 137(2014) 758-766.[30] Y. Zhang, X. Bo, C. Luhana, L. Guo, Preparation and electrocatalytic application of high dispersed Pt nanoparticles/ordered mesoporous carbon composites, Electrochim. Acta 56(2011) 5849-5854.[31] Y. Li, X. Zhang, Q. Zhang, J. Zheng, N. Zhang, B. Chen, K. Smith, Activity and kinetics of ruthenium supported catalysts for sodium borohydride hydrolysis to hydrogen, RSC Adv. 6(2016) 29371-29377.[32] S. Li, Q. Xu, E. Uchaker, X. Cao, G. Cao, Comparison of amorphous, pseudohexagonal and orthorhombic Nb2O5 for high-rate lithium ion insertion, CrystEngComm 18(2016) 2532-2540.[33] Y. Xie, W. Zhang, S. Gu, Y. Yan, Z.-F. Ma, Process engineering in electrochemical energy devices innovation, Chin. J. Chem. Eng. 24(2016) 39-47. |