Chinese Journal of Chemical Engineering ›› 2018, Vol. 26 ›› Issue (11): 2303-2317.DOI: 10.1016/j.cjche.2018.07.012
• Special issue of Carbon Capture, Utilisation and Storage • 上一篇 下一篇
Lijuan Nie1,2, Yuanyuan Mu1,2, Junsu Jin1, Jian Chen2, Jianguo Mi1
收稿日期:
2018-05-31
修回日期:
2018-07-11
出版日期:
2018-11-28
发布日期:
2018-12-10
通讯作者:
Junsu Jin, Jian Chen
基金资助:
Supported by the National Key Research & Development Program of China (2017YFB0603302).
Lijuan Nie1,2, Yuanyuan Mu1,2, Junsu Jin1, Jian Chen2, Jianguo Mi1
Received:
2018-05-31
Revised:
2018-07-11
Online:
2018-11-28
Published:
2018-12-10
Contact:
Junsu Jin, Jian Chen
Supported by:
Supported by the National Key Research & Development Program of China (2017YFB0603302).
摘要: The increase in energy demand caused by industrialization leads to abundant CO2 emissions into atmosphere and induces abrupt rise in earth temperature. It is vital to acquire relatively simple and cost-effective technologies to separate CO2 from the flue gas and reduce its environmental impact. Solid adsorption is now considered an economic and least interfering way to capture CO2, in that it can accomplish the goal of small energy penalty and few modifications to power plants. In this regard, we attempt to review the CO2 adsorption performances of several types of solid adsorbents, including zeolites, clays, activated carbons, alkali metal oxides and carbonates, silica materials, metal-organic frameworks, covalent organic frameworks, and polymerized high internal phase emulsions. These solid adsorbents have been assessed in their CO2 adsorption capacities along with other important parameters including adsorption kinetics, effect of water, recycling stability and regenerability. In particular, the superior properties of adsorbents enhanced by impregnating or grafting amine groups have been discussed for developing applicable candidates for industrial CO2 capture.
Lijuan Nie, Yuanyuan Mu, Junsu Jin, Jian Chen, Jianguo Mi. Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas[J]. Chinese Journal of Chemical Engineering, 2018, 26(11): 2303-2317.
Lijuan Nie, Yuanyuan Mu, Junsu Jin, Jian Chen, Jianguo Mi. Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas[J]. Chin.J.Chem.Eng., 2018, 26(11): 2303-2317.
[1] A.L. Yaumi, M.Z.A. Bakar, B.H. Hameed, Recent advances in functionalized composite solid materials for carbon dioxide capture, Energy 124(2017) 461-480.[2] M. Oschatz, M. Antonietti, A search for selectivity to enable CO2 capture with porous adsorbents, Energy Environ. Sci. 11(2018) 57-70.[3] B. Cai, Q. Li, G. Liu, L. Liu, T. Jin, H. Shi, Environmental concern-based site screening of carbon dioxide geological storage in China, Sci. Rep. 7(2017) 7598.[4] V. Scott, S. Gilfillan, N. Markusson, H. Chalmers, R.S. Haszeldine, Last chance for carbon capture and storage, Nat. Clim. Chang. 3(2012) 105-111.[5] A.A. Olajire, Synthesis of bare and functionalized porous adsorbent materials for CO2 capture, Greenhouse Gases Sci. Technol. 7(2017) 399-459.[6] L. Peters, A. Hussain, M. Follmann, T. Melin, M.B. Hagg, CO2 removal from natural gas by employing amine absorption and membrane technology-A technical and economical analysis, Chem. Eng. J. 172(2011) 952-960.[7] S.S. Warudkar, K.R. Cox, M.S. Wong, G.J. Hirasaki, Influence of stripper operating parameters on the performance of amine absorption systems for postcombustion carbon capture:Part I. High pressure strippers, Int. J. Greenhouse Gas Control 16(2013) 342-350.[8] L.-B. Sun, A.-G. Li, X.-D. Liu, X.-Q. Liu, D. Feng, W. Lu, D. Yuan, H.-C. Zhou, Facile fabrication of cost-effective porous polymer networks for highly selective CO2 capture, J. Mater. Chem. A 3(2015) 3252-3256.[9] Q. Wang, J. Luo, Z. Zhong, A. Borgna, CO2 capture by solid adsorbents and their applications:Current status and new trends, Energy Environ. Sci. 4(2011) 42-55.[10] S. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna, B. Chen, Microporous metalorganic framework with potential for carbon dioxide capture at ambient conditions, Nat. Commun. 3(2012) 954.[11] S.-M. Hong, E. Jang, A.D. Dysart, V.G. Pol, K.B. Lee, CO2 capture in the sustainable wheat-derived activated microporous carbon compartments, Sci. Rep. 6(2016).[12] C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova, O.M. Yaghi, The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion, Nat. Rev. Mater. 2(2017) 17045.[13] M. Kacem, M. Pellerano, A. Delebarre, Pressure swing adsorption for CO2/N2 and CO2/CH4 separation:Comparison between activated carbons and zeolites performances, Fuel Process. Technol. 138(2015) 271-283.[14] S. Garcia, M.V. Gil, C.F. Martin, J.J. Pis, F. Rubiera, C. Pevida, Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture, Chem. Eng. J. 171(2011) 549-556.[15] R. Ben-Mansour, M.A. Habib, O.E. Bamidele, M. Basha, N.A.A. Qasem, A. Peedikakkal, T. Laoui, M. Ali, Carbon capture by physical adsorption:Materials, experimental investigations and numerical modeling and simulations-A review, Appl. Energy 161(2016) 225-255.[16] A. Alabadi, S. Razzaque, Y. Yang, S. Chen, B. Tan, Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity, Chem. Eng. J. 281(2015) 606-612.[17] P.M. Bhatt, Y. Belmabkhout, A. Cadiau, K. Adil, O. Shekhah, A. Shkurenko, L.J. Barbour, M. Eddaoudi, A fine-tuned fluorinated mof addresses the needs for trace CO2 removal and air capture using physisorption, J. Am. Chem. Soc. 138(2016) 9301-9307.[18] Y. Belmabkhout, V. Guillerm, M. Eddaoudi, Low concentration CO2 capture using physical adsorbents:Are metal-organic frameworks becoming the new benchmark materials? Chem. Eng. J. 296(2016) 386-397.[19] Z. Geng, Q. Xiao, H. Lv, B. Li, H. Wu, Y. Lu, C. Zhang, One-step synthesis of microporous carbon monoliths derived from biomass with high nitrogen doping content for highly selective CO2 capture, Sci. Rep. 6(2016).[20] G. Zahra, S. Iman, K. Hossein, R. Sohrab, Application of zeolites in aquaculture industry:A review, Rev. Aquac. 10(2018) 75-95.[21] C. Quintelas, Z. Rocha, B. Silva, B. Fonseca, H. Figueiredo, T. Tavares, Removal of Cd (Ⅱ), Cr(VI), Fe(Ⅲ) and Ni(Ⅱ) from aqueous solutions by an E. Coli biofilm supported on kaolin, Chem. Eng. J. 149(2009) 319-324.[22] J. Morency, Zeolite sorbent that effectively removes mercury from flue gases, Filtr. Sep. 39(2002) 24-26.[23] Z. Zhao, X. Cui, J. Ma, R. Li, Adsorption of carbon dioxide on alkali-modified zeolite 13X adsorbents, Int. J. Greenhouse Gas Control 1(2007) 355-359.[24] J. Yang, H. Shang, R. Krishna, Y. Wang, K. Ouyang, J. Li, Adjusting the proportions of extra-framework K+ and Cs+ cations to construct a "molecular gate" on ZK-5 for CO2 removal, Microporous Mesoporous Mater. 268(2018) 50-57.[25] T.D. Pham, M.R. Hudson, C.M. Brown, R.F. Lobo, On the structure-property relationships of cation-exchanged ZK-5 zeolites for CO2 adsorption, ChemSusChem 10(2017) 946-957.[26] D. Madden, T. Curtin, Carbon dioxide capture with amino-functionalised zeolite-β:A temperature programmed desorption study under dry and humid conditions, Microporous Mesoporous Mater. 228(2016) 310-317.[27] C. Chen, S.-S. Kim, W.-S. Cho, W.-S. Ahn, Polyethylenimine-incorporated zeolite 13X with mesoporosity for post-combustion CO2 capture, Appl. Surf. Sci. 332(2015) 167-171.[28] W. Wang, X. Wang, C. Song, X. Wei, J. Ding, J. Xiao, Sulfuric acid modified bentonite as the support of tetraethylenepentamine for CO2 capture, Energy Fuel 27(2013) 1538-1546.[29] W. Wang, J. Xiao, X. Wei, J. Ding, X. Wang, C. Song, Development of a new clay supported polyethylenimine composite for CO2 capture, Appl. Energy 113(2014) 334-341.[30] M. Irani, M. Fan, H. Ismail, A. Tuwati, B. Dutcher, A.G. Russell, Modified nanosepiolite as an inexpensive support of tetraethylenepentamine for CO2 sorption, Nano Energy 11(2015) 235-246.[31] R.B. Vieira, H.O. Pastore, Polyethylenimine-magadiite layered silicate sorbent for CO2 capture, Environ. Sci. Technol. 48(2014) 2472-2480.[32] A. Jain, R. Balasubramanian, M.P. Srinivasan, Hydrothermal conversion of biomass waste to activated carbon with high porosity:A review, Chem. Eng. J. 283(2016) 789-805.[33] P. Hadi, M. Xu, C. Ning, C. Sze Ki Lin, G. McKay, A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment, Chem. Eng. J. 260(2015) 895-906.[34] F. Montagnaro, A. Silvestre-Albero, J. Silvestre-Albero, F. Rodriguez-Reinoso, A. Erto, A. Lancia, M. Balsamo, Post-combustion CO2 adsorption on activated carbons with different textural properties, Microporous Mesoporous Mater. 209(2015) 157-164.[35] G. Sethia, A. Sayari, Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture, Carbon 93(2015) 68-80.[36] R. Hoseinzadeh Hesas, A. Arami-Niya, W.M.A. Wan Daud, J.N. Sahu, Microwaveassisted production of activated carbons from oil palm shell in the presence of CO2 or N2 for CO2 adsorption, J. Ind. Eng. Chem. 24(2015) 196-205.[37] S. Faraji, F.N. Ani, The development supercapacitor from activated carbon by electroless plating-A review, Renew. Sust. Energ. Rev. 42(2015) 823-834.[38] Q. Wu, S. Zhang, B. Hou, H. Zheng, W. Deng, D. Liu, W. Tang, Study on the preparation of wood vinegar from biomass residues by carbonization process, Bioresour. Technol. 179(2015) 98-103.[39] C. Laginhas, J.M.V. Nabais, M.M. Titirici, Activated carbons with high nitrogen content by a combination of hydrothermal carbonization with activation, Microporous Mesoporous Mater. 226(2016) 125-132.[40] P. Kleszyk, P. Ratajczak, P. Skowron, J. Jagiello, Q. Abbas, E. Frackowiak, F. Beguin, Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors, Carbon 81(2015) 148-157.[41] M. Alhassan, I. Andrew, M. Auta, M. Umaru, M.U. Garba, A.G. Isah, B. Alhassan, Comparative studies of CO2 capture using acid and base modified activated carbon from sugarcane bagasse, Biofuels (2017) 1-10.[42] J. Ludwinowicz, M. Jaroniec, Effect of activating agents on the development of microporosity in polymeric-based carbon for CO2 adsorption, Carbon 94(2015) 673-679.[43] A.S. Ello, L.K.C. de Souza, A. Trokourey, M. Jaroniec, Coconut shell-based microporous carbons for CO2 capture, Microporous Mesoporous Mater. 180(2013) 280-283.[44] A.S. Gonzalez, M.G. Plaza, F. Rubiera, C. Pevida, Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture, Chem. Eng. J. 230(2013) 456-465.[45] J. Katesa, S. Junpiromand, C. Tangsathitkulchai, Effect of carbonization temperature on properties of char and activated carbon from coconut shell, Suranaree J. Sci. Technol. 20(2013) 269-278.[46] J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O'Hare, Z. Zhong, Recent advances in solid sorbents for CO2 capture and new development trends, Energy Environ. Sci. 7(2014) 3478-3518.[47] L. Tong, T. Yue, P. Zuo, X. Zhang, C. Wang, J. Gao, K. Wang, Effect of characteristics of KI-impregnated activated carbon and flue gas components on Hg0 removal, Fuel 197(2017) 1-7.[48] A.E. Creamer, B. Gao, Carbon-based adsorbents for postcombustion CO2 capture:A critical review, Environ. Sci. Technol. 50(2016) 7276-7289.[49] L. Peiqiang, W. Sufang, Synthesis of a porous nano-CaO/MgO-based CO2 adsorbent, Chem. Eng. Technol. 37(2014) 580-586.[50] N.N. Hlaing, S. Sreekantan, R. Othman, S.-Y. Pung, H. Hinode, W. Kurniawan, A.A. Thant, A.R. Mohamed, C. Salime, Sol-gel hydrothermal synthesis of microstructured CaO-based adsorbents for CO2 capture, RSC Adv. 5(2015) 6051-6060.[51] W. Liu, H. An, C. Qin, J. Yin, G. Wang, B. Feng, M. Xu, Performance enhancement of calcium oxide sorbents for cyclic CO2 capture-A review, Energy Fuel 26(2012) 2751-2767.[52] M. Ramezani, P. Tremain, E. Doroodchi, B. Moghtaderi, Determination of carbonation/calcination reaction kinetics of a limestone sorbent in low CO2 partial pressures using tga experiments, Energy Procedia 114(2017) 259-270.[53] A.I. Lysikov, A.N. Salanov, A.G. Okunev, Change of CO2 carrying capacity of CaO in isothermal recarbonation-decomposition cycles, Ind. Eng. Chem. Res. 46(2007) 4633-4638.[54] B. Gonzalez, W. Liu, D.S. Sultan, J.S. Dennis, The effect of steam on a synthetic Cabased sorbent for carbon capture, Chem. Eng. J. 285(2016) 378-383.[55] Y. Tsuboi, N. Koga, Thermal decomposition of biomineralized calcium carbonate:Correlation between the thermal behavior and structural characteristics of avian eggshell, ACS Sustain. Chem. Eng. 6(2018) 5283-5295.[56] D. Mess, A.F. Sarofim, J.P. Longwell, Product layer diffusion during the reaction of calcium oxide with carbon dioxide, Energy Fuel 13(1999) 999-1005.[57] P. Sun, J.R. Grace, C.J. Lim, E.J. Anthony, Determination of intrinsic rate constants of the CaO-CO2 reaction, Chem. Eng. Sci. 63(2008) 47-56.[58] J.M. Valverde, P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, Limestone calcination nearby equilibrium:Kinetics, CaO crystal structure, sintering and reactivity, J. Phys. Chem. C 119(2015) 1623-1641.[59] Z. Li, H. Sun, N. Cai, Rate equation theory for the carbonation reaction of CaO with CO2, Energy Fuel 26(2012) 4607-4616.[60] K. Johnsen, J.R. Grace, S. Elnashaie, L. Kolbeinsen, D. Eriksen, Modeling of sorptionenhanced steam reforming in a dual fluidized bubbling bed reactor, Ind. Eng. Chem. Res. 45(2006) 4133-4144.[61] A. Benedetti, M. Strumendo, Application of a random pore model with distributed pore closure to the carbonation reaction, in:S. Pierucci, J.J. Klemes (Eds.),Icheap 12:12th International Conference on Chemical & Process Engineering 2015, pp. 1153-1158.[62] A. Jayakumar, A. Gomez, N. Mahinpey, Kinetic behavior of solid K2CO3 under postcombustion CO2 capture conditions, Ind. Eng. Chem. Res. 56(2017) 853-863.[63] S. Choi, J.H. Drese, C.W. Jones, Adsorbent materials for carbon dioxide capture from large anthropogenic point sources, ChemSusChem 2(2009) 796-854.[64] S. Sengupta, V. Amte, R. Dongara, A.K. Das, H. Bhunia, P.K. Bajpai, Effects of the adsorbent preparation method for CO2 capture from flue gas using K2CO3/Al2O3 adsorbents, Energy Fuel 29(2015) 287-297.[65] O.-a. Jaiboon, B. Chalermsinsuwan, L. Mekasut, P. Piumsomboon, Effect of flow patterns/regimes on CO2 capture using K2CO3 solid sorbent in fluidized bed/circulating fluidized bed, Chem. Eng. J. 219(2013) 262-272.[66] Y. Guo, C. Li, S. Lu, C. Zhao, Understanding the deactivation of K2CO3/AC for lowconcentration CO2 removal in the presence of trace SO2 and NO2, Chem. Eng. J. 301(2016) 325-333.[67] Y. Guo, C. Li, S. Lu, C. Zhao, Efficacious means for inhibiting the deactivation of K2CO3/AC for low-concentration CO2 removal in the presence of SO2 and NO2, Chem. Eng. J. 308(2017) 516-526.[68] R. Rodriguez-Mosqueda, E.A. Bramer, T. Roestenberg, G. Brem, Parametrical study on CO2 capture from ambient air using hydrated K2CO3 supported on an activated carbon honeycomb, Ind. Eng. Chem. Res. 57(2018) 3628-3638.[69] J. Esmaili, M.R. Ehsani, Study on the effect of preparation parameters of K2CO3/Al2O3 sorbent on CO2 capture capacity at flue gas operating conditions, J. Encapsulation Adsorpt. Sci. 03(2013) 57-63.[70] M. Amiri, S. Shahhosseini, A. Ghaemi, Optimization of CO2 capture process from simulated flue gas by dry regenerable alkali metal carbonate based adsorbent using response surface methodology, Energy Fuel 31(2017) 5286-5296.[71] C. Zhao, Y. Guo, W. Li, C. Bu, X. Wang, P. Lu, Experimental and modeling investigation on CO2 sorption kinetics over K2CO3-modified silica aerogels, Chem. Eng. J. 312(2017) 50-58.[72] Y. Guo, C. Zhao, J. Sun, W. Li, P. Lu, Facile synthesis of silica aerogel supported K2CO3 sorbents with enhanced CO2 capture capacity for ultra-dilute flue gas treatment, Fuel 215(2018) 735-743.[73] S.C. Lee, H.J. Chae, S.J. Lee, B.Y. Choi, C.K. Yi, J.B. Lee, C.K. Ryu, J.C. Kim, Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures, Environ. Sci. Technol. 42(2008) 2736-2741.[74] Y. Guo, C. Li, S. Lu, C. Zhao, K2CO3-modified potassium feldspar for CO2 capture from post-combustion flue gas, Energy Fuel 29(2015) 8151-8156.[75] J. Ludwinowicz, M. Jaroniec, Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption, Carbon 82(2015) 297-303.[76] L.K.G. Bhatta, S. Subramanyam, M.D. Chengala, U.M. Bhatta, K. Venkatesh, Enhancement in CO2 adsorption on hydrotalcite-based material by novel carbon support combined with K2CO3 impregnation, Ind. Eng. Chem. Res. 54(2015) 10876-10884.[77] C. Zhao, X. Chen, C. Zhao, CO2 absorption using dry potassium-based sorbents with different supports, Energy Fuel 23(2009) 4683-4687.[78] S.C. Lee, B.Y. Choi, T.J. Lee, C.K. Ryu, Y.S. Ahn, J.C. Kim, CO2 absorption and regeneration of alkali metal-based solid sorbents, Catal. Today 111(2006) 385-390.[79] S.C. Lee, H.J. Chae, B.Y. Choi, S.Y. Jung, C.Y. Ryu, J.J. Park, J.-I. Baek, C.K. Ryu, J.C. Kim, The effect of relative humidity on CO2 capture capacity of potassium-based sorbents, Korean J. Chem. Eng. 28(2011) 480-486.[80] C. Qin, J. Yin, J. Ran, L. Zhang, B. Feng, Effect of support material on the performance of K2CO3-based pellets for cyclic CO2 capture, Appl. Energy 136(2014) 280-288.[81] S.-Y. Lee, S.-J. Park, A review on solid adsorbents for carbon dioxide capture, J. Ind. Eng. Chem. 23(2015) 1-11.[82] W. Choi, K. Min, C. Kim, Y.S. Ko, J. Jeon, H. Seo, Y.-K. Park, M. Choi, Epoxidefunctionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption, Nat. Commun. 7(2016).[83] C.G. Sonwane, S.K. Bhatia, N. Calos, Experimental and theoretical investigations of adsorption hysteresis and criticality in MCM-41:Studies with O2, Ar, and CO2, Ind. Eng. Chem. Res. 37(1998) 2271-2283.[84] K. Morishige, Y. Nakamura, Nature of adsorption and desorption branches in cylindrical pores, Langmuir 20(2004) 4503-4506.[85] E.S. Sanz-Perez, A. Arencibia, G. Calleja, R. Sanz, Tuning the textural properties of HMS mesoporous silica. Functionalization towards CO2 adsorption, Microporous Mesoporous Mater. 260(2018) 235-244.[86] D.V. Quang, A.V. Rayer, N. El Hadri, M.R.M. Abu-Zahra, Preparation of polyethylenimine impregnated mesoporous precipitated silica for CO2 capture, in:M.J. Al-Marri, F.T. Eljack (Eds.), Proceedings of the 4th International Gas Processing Symposium, Elsevier, Oxford 2015, pp. 21-37.[87] N.H. Khdary, M.A. Ghanem, M.E. Abdesalam, M.M. Al-Garadah, Sequestration of CO2 using Cu nanoparticles supported on spherical and rod-shape mesoporous silica, J. Saudi Chem. Soc. 22(2018) 343-351.[88] K. Hori, T. Higuchi, Y. Aoki, M. Miyamoto, Y. Oumi, K. Yogo, S. Uemiya, Effect of pore size, aminosilane density and aminosilane molecular length on CO2 adsorption performance in aminosilane modified mesoporous silica, Microporous Mesoporous Mater. 246(2017) 158-165.[89] M.Y.S. Hamid, M.L. Firmansyah, S. Triwahyono, A.A. Jalil, R.R. Mukti, E. Febriyanti, V. Suendo, H.D. Setiabudi, M. Mohamed, W. Nabgan, Oxygen vacancy-rich mesoporous silica KCC-1 for CO2 methanation, Appl. Catal. A Gen. 532(2017) 86-94.[90] A. Hakiki, B. Boukoussa, H. Habib Zahmani, R. Hamacha, N.E.H. Hadj Abdelkader, F. Bekkar, F. Bettahar, A.P. Nunes-Beltrao, S. Hacini, A. Bengueddach, A. Azzouz, Synthesis and characterization of mesoporous silica SBA-15 functionalized by mono-, di-, and tri-amine and its catalytic behavior towards Michael addition, Mater. Chem. Phys. 212(2018) 415-425.[91] K. Li, J. Jiang, S. Tian, F. Yan, X. Chen, Polyethyleneimine-nano silica composites:A low-cost and promising adsorbent for CO2 capture, J. Mater. Chem. A 3(2015) 2166-2175.[92] W. Wang, Q. Zeng, M. Li, W. Zheng, D. Christianson, J. Economy, Adsorptive removal of carbon dioxide using polyethyleneimine loaded glass fiber in a fixed bed, Colloids Surf. A Physicochem. Eng. Asp. 481(2015) 117-124.[93] J.C. Hicks, J.H. Drese, D.J. Fauth, M.L. Gray, G. Qi, C.W. Jones, Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly, J. Am. Chem. Soc. 130(2008) 2902-2903.[94] J.H. Drese, S. Choi, S.A. Didas, P. Bollini, M.L. Gray, C.W. Jones, Effect of support structure on CO2 adsorption properties of pore-expanded hyperbranched aminosilicas, Microporous Mesoporous Mater. 151(2012) 231-240.[95] M.A. Alkhabbaz, P. Bollini, G.S. Foo, C. Sievers, C.W. Jones, Important roles of enthalpic and entropic contributions to CO2 capture from simulated flue gas and ambient air using mesoporous silica grafted amines, J. Am. Chem. Soc. 136(2014) 13170-13173.[96] C.-J. Yoo, L.-C. Lee, C.W. Jones, Probing intramolecular versus intermolecular CO2 adsorption on amine-grafted SBA-15, Langmuir 31(2015) 13350-13360.[97] M.L. Sarazen, C.W. Jones, Insights into azetidine polymerization for the preparation of poly(propylenimine)-based CO2 adsorbents, Macromolecules 50(2017) 9135-9143.[98] R. Sanz, G. Calleja, A. Arencibia, E.S. Sanz-Perez, Amino functionalized mesostructured SBA-15 silica for CO2 capture:Exploring the relation between the adsorption capacity and the distribution of amino groups by TEM, Microporous Mesoporous Mater. 158(2012) 309-317.[99] M. Niu, H. Yang, X. Zhang, Y. Wang, A. Tang, Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture, ACS Appl. Mater. Interfaces 8(2016) 17312-17320.[100] X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Novel polyethyleniminemodified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture, Energy Fuel 16(2002) 1463-1469.[101] X. Xu, C. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Preparation and characterization of novel CO2"molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Microporous Mesoporous Mater. 62(2003) 29-45.[102] X. Xu, C. Song, B.G. Miller, A.W. Scaroni, Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethyleniminemodified molecular sieve MCM-41, Ind. Eng. Chem. Res. 44(2005) 8113-8119.[103] X. Wang, V. Schwartz, J.C. Clark, X. Ma, S.H. Overbury, X. Xu, C. Song, Infrared study of CO2 sorption over "molecular basket" sorbent consisting of polyethylenimine-modified mesoporous molecular sieve, J. Phys. Chem. C 113(2009) 7260-7268.[104] Z.H. Zhang, X.L. Ma, D.X. Wang, C.S. Song, Y.G. Wang, Development of silica-gelsupported polyethylenimine sorbents for CO2 capture from flue gas, AIChE J. 58(2012) 2495-2502.[105] M. Jahandar Lashaki, A. Sayari, CO2 capture using triamine-grafted SBA-15:The impact of the support pore structure, Chem. Eng. J. 334(2018) 1260-1269.[106] Y. Belmabkhout, R. Serna-Guerrero, A. Sayari, Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 1:Pure CO2 adsorption, Chem. Eng. Sci. 64(2009) 3721-3728.[107] F. Rezaei, C.W. Jones, Stability of supported amine adsorbents to SO2 and NOx in postcombustion CO2 capture. 2. Multicomponent adsorption, Ind. Eng. Chem. Res. 53(2014) 12103-12110.[108] G. Maurin, C. Serre, A. Cooper, G. Ferey, The new age of MOFs and of their porousrelated solids, Chem. Soc. Rev. 46(2017) 3104-3107.[109] Q. Wang, J. Bai, Z. Lu, Y. Pan, X. You, Finely tuning MOFs towards high-performance post-combustion CO2 capture materials, Chem. Commun. 52(2016) 443-452.[110] W.X. Zhang, D.H. Liu, X.Y. Guo, H.L. Huang, C.L. Zhong, Fabrication of mixed-matrix membranes with MOF-derived porous carbon for CO2 separation, AIChE J. 64(2018) 3400-3409.[111] H. Huang, W. Zhang, F. Yang, B. Wang, Q. Yang, Y. Xie, C. Zhong, J.-R. Li, Enhancing CO2 adsorption and separation ability of Zr(IV)-based metal-organic frameworks through ligand functionalization under the guidance of the quantitative structure-property relationship model, Chem. Eng. J. 289(2016) 247-253.[112] M. Ghahramaninezhad, B. Soleimani, M.N. Shahrak, A simple and novel protocol for Li-trapping with a POM/MOF nano-composite as a new adsorbent for CO2 uptake, New J. Chem. 42(2018) 4639-4645.[113] F. Xu, Y. Yu, J. Yan, Q. Xia, H. Wang, J. Li, Z. Li, Ultrafast room temperature synthesis of GrO@HKUST-1 composites with high CO2 adsorption capacity and CO2/N2 adsorption selectivity, Chem. Eng. J. 303(2016) 231-237.[114] C. Hou, Q. Liu, P. Wang, W.-Y. Sun, Porous metal-organic frameworks with high stability and selective sorption for CO2 over N2, Microporous Mesoporous Mater. 172(2013) 61-66.[115] J.-R. Li, Y. Ma, M.C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P.B. Balbuena, H.-C. Zhou, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks, Coord. Chem. Rev. 255(2011) 1791-1823.[116] Y.K. Kim, S.-m. Hyun, J.H. Lee, T.K. Kim, D. Moon, H.R. Moon, Crystal-size effects on carbon dioxide capture of a covalently alkylamine-tethered metal-organic framework constructed by a one-step self-assembly, Sci. Rep. 6(2016).[117] F. Martinez, R. Sanz, G. Orcajo, D. Briones, V. Yanguez, Amino-impregnated MOF materials for CO2 capture at post-combustion conditions, Chem. Eng. Sci. 142(2016) 55-61.[118] S. Dasgupta, N. Biswas, N.G. Gode, S. Divekar, A. Nanoti, A.N. Goswami, CO2 recovery from mixtures with nitrogen in a vacuum swing adsorber using metal organic framework adsorbent:A comparative study, Int. J. Greenhouse Gas Control 7(2012) 225-229.[119] P. Mishra, S. Edubilli, B. Mandal, S. Gumma, Adsorption of CO2, CO, CH4 and N2 on DABCO based metal organic frameworks, Microporous Mesoporous Mater. 169(2013) 75-80.[120] A.O. Yazaydin, R.Q. Snurr, T.-H. Park, K. Koh, J. Liu, M.D. Levan, A.I. Benin, P. Jakubczak, M. Lanuza, D.B. Galloway, J.J. Low, R.R. Willis, Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach, J. Am. Chem. Soc. 131(2009) 18198-18199.[121] I. Luz, M. Soukri, M. Lail, Flying MOFs:Polyamine-containing fluidized MOF/SiO2 hybrid materials for CO2 capture from post-combustion flue gas, Chem. Sci. 9(2018) 4589-4599.[122] W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna, H.-C. Zhou, Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure, J. Am. Chem. Soc. 133(2011) 18126-18129.[123] J.W. To, J. He, J. Mei, R. Haghpanah, Z. Chen, T. Kurosawa, S. Chen, W.G. Bae, L. Pan, J.B. Tok, J. Wilcox, Z. Bao, Hierarchical N-Doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor, J. Am. Chem. Soc. 138(2016) 1001-1009.[124] Y. Zeng, R. Zou, Y. Zhao, Covalent organic frameworks for CO2 capture, Adv. Mater. 28(2016) 2855-2873.[125] S. Luo, Q. Zhang, Y. Zhang, K.P. Weaver, W.A. Phillip, R. Guo, Facile synthesis of a pentiptycene-based highly microporous organic polymer for gas storage and water treatment, ACS Appl. Mater. Interfaces 10(2018) 15174-15182.[126] S.J. Datta, C. Khumnoon, Z.H. Lee, W.K. Moon, S. Docao, T.H. Nguyen, I.C. Hwang, D. Moon, P. Oleynikov, O. Terasaki, K.B. Yoon, CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate, Science 350(2015) 302.[127] Y. Du, K. Mao, P. Kamakoti, P. Ravikovitch, C. Paur, S. Cundy, Q. Li, D. Calabro, Experimental and computational studies of pyridine-assisted post-synthesis modified air stable covalent-organic frameworks, Chem. Commun. 48(2012) 4606-4608.[128] Y. Du, K. Mao, P. Kamakoti, B. Wooler, S. Cundy, Q. Li, P. Ravikovitch, D. Calabro, The effects of pyridine on the structure of B-COFs and the underlying mechanism, J. Mater. Chem. A 1(2013) 13171.[129] S. Kandambeth, A. Mallick, B. Lukose, M.V. Mane, T. Heine, R. Banerjee, Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route, J. Am. Chem. Soc. 134(2012) 19524-19527.[130] D. Kaleeswaran, P. Vishnoi, R. Murugavel,[3+3] Imine and β-ketoenamine tethered fluorescent covalent-organic frameworks for CO2 uptake and nitroaromatic sensing, J. Mater. Chem. C 3(2015) 7159-7171.[131] Y. Zhao, K.X. Yao, B. Teng, T. Zhang, Y. Han, A perfluorinated covalent triazine-based framework for highly selective and water-tolerant CO2 capture, Energy Environ. Sci. 6(2013) 3684-3692.[132] H. He, L. Zhuang, S. Chen, H. Liu, Q. Li, Structure design of a hyperbranched polyamine adsorbent for CO2 adsorption, Green Chem. 18(2016) 5859-5869.[133] Z. Yang, H. Wang, G. Ji, X. Yu, Y. Chen, X. Liu, C. Wu, Z. Liu, Pyridine-functionalized organic porous polymers:Applications in efficient CO2 adsorption and conversion, New J. Chem. 41(2017) 2869-2872.[134] Y. Zhu, H. Long, W. Zhang, Imine-linked porous polymer frameworks with high small gas (H2, CO2, CH4, C2H2) uptake and CO2/N2 selectivity, Chem. Mater. 25(2013) 1630-1635.[135] J.W. Yoon, T.-U. Yoon, E.-J. Kim, A.-R. Kim, T.-S. Jung, S.-S. Han, Y.-S. Bae, Highly selective adsorption of CO over CO2 in a Cu(I)-chelated porous organic polymer, J. Hazard. Mater. 341(2018) 321-327.[136] H. He, W. Li, M. Lamson, M. Zhong, D. Konkolewicz, C.M. Hui, K. Yaccato, T. Rappold, G. Sugar, N.E. David, K. Damodaran, S. Natesakhawat, H. Nulwala, K. Matyjaszewski, Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture, Polymer 55(2014) 385-394.[137] S. Zhang, D. Wang, Q. Pan, Q. Gui, S. Liao, Y. Wang, Light-triggered CO2 breathing foam via nonsurfactant high internal phase emulsion, ACS Appl. Mater. Interfaces 9(2017) 34497-34505.[138] G.P. Knowles, Z. Liang, A.L. Chaffee, Shaped polyethyleneimine sorbents for CO2 capture, Microporous Mesoporous Mater. 238(2017) 14-18.[139] C. Saiwan, S. Jaroensin, P. Tontiwachwutikul, Effect of biopolymer loading into high porosity polymer adsorbent for carbon dioxide adsorption, Energy Procedia 63(2014) 2305-2311.[140] C. Duan, Z. Du, W. Zou, H. Li, C. Zhang, Construction of nitrogen-containing hierarchical porous polymers and its application on carbon dioxide capturing, Ind. Eng. Chem. Res. 57(2018) 5291-5300.[141] F. Liu, S. Wang, G. Lin, S. Chen, Development and characterization of aminefunctionalized hyper-cross-linked resin for CO2 capture, New J. Chem. 42(2018) 420-428.[142] Q. Wang, Y. Liu, J. Chen, Z. Du, J. Mi, Control of uniform and interconnected macroporous structure in polyHIPE for enhanced CO2 adsorption/desorption kinetics, Environ. Sci. Technol. 50(2016) 7879-7888.[143] P. Muchan, C. Saiwan, D. de Montigny, P. Tontiwachwuthikul, Development of polymer from high internal phase emulsion for CO2 adsorption, Energy Procedia 37(2013) 151-158.[144] C. Saiwan, P. Muchan, D. de Montigny, P. Tontiwachwutikul, New poly (vinylbenzylchloride/divinylbenzene) adsorbent for carbon dioxide adsorption. I. Synthesis and parametric study, Energy Procedia 63(2014) 2312-2316.[145] F. Liu, S. Chen, Y. Gao, Synthesis of porous polymer based solid amine adsorbent:Effect of pore size and amine loading on CO2 adsorption, J. Colloid Interface Sci. 506(2017) 236-244.[146] J. Han, Z. Du, W. Zou, H. Li, C. Zhang, Moisture-responsive hydrogel impregnated in porous polymer foam as CO2 adsorbent in high-humidity flue gas, Ind. Eng. Chem. Res. 54(2015) 7623-7631.[147] Q. Wang, H. Ma, J. Chen, Z. Du, J. Mi, Interfacial control of polyHIPE with nano-TiO2 particles and polyethylenimine toward actual application in CO2 capture, J. Environ. Chem. Eng. 5(2017) 2807-2814. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||