[1] Q. Zhu, S. Guo, C. Guo, D. Dai, X. Jiao, T. Ma, J. Chen, Stability of Fe-C microelectrolysis and biological process in treating ultra-high concentration organic wastewater, Chem. Eng. J. 255(2014) 535-540. [2] B. Lai, Y.X. Zhou, P. Yang, J. Yang, J. Wang, Degradation of 3,3'-iminobispropanenitrile in aqueous solution by Fe0/GAC micro-electrolysis system, Chemosphere 90(4) (2013) 1470-1477. [3] X.Y. Zhu, X.J. Chen, Z.M. Yang, Y. Liu, Z.Y. Zhou, Z.Q. Ren, Investigating the influences of electrode material property on degradation behavior of organic wastewaters by iron-carbon micro-electrolysis, Chem. Eng. J. 338(2017) 46-54. [4] S. Zhang, D. Wang, L. Zhou, X.W. Zhang, P.P. Fan, X. Quan, Intensified internal electrolysis for degradation of methylene blue as model compound induced by a novel hybrid material:Multi-walled carbon nanotubes immobilized on zerovalent iron plates (Fe0-CNTs), Chem. Eng. J. 217(2) (2013) 99-107. [5] Y.H. Han, H. Li, M.L. Liu, Y.M. Sang, C.Z. Liang, J.Q. Chen, Purification treatment of dyes wastewater with a novel micro-electrolysis reactor, Sep. Purif. Technol. 170(2016) 241-247. [6] X.H. Guan, X.H. Xu, M. Lu, H.F. Li, Pretreatment of oil shale retort wastewater by acidification and ferric-carbon micro-electrolysis, Energy Procedia 17(1) (2012) 1655-1661. [7] R. Xie, M. Wu, G. Qu, P. Ning, Y. Cai, P. Lv, Treatment of coking wastewater by a novel electric assisted micro-electrolysis filter, J. Environ. Sci. 66(2018) 165-172. [8] M. Räsänen, T. Eerikäinen, H. Ojamo, Characterization and hydrodynamics of a novel helix airlift reactor, Chem. Eng. Process. Process Intensif. 108(2016) 44-57. [9] K. Wadaugsorn, S. Limtrakul, T. Vatanatham, P.A. Ramachandran, Hydrodynamic behaviors and mixing characteristics in an internal loop airlift reactor based on CFD simulation, Chem. Eng. Res. Des. 113(2016) 125-139. [10] A. Couvert, M. Roustan, P. Chatellier, Two-phase hydrodynamic study of a rectangular air-lift loop reactor with an internal baffle, Chem. Eng. Sci. 54(21) (1999) 5245-5252. [11] C. Freitas, M. Fialová, J. Zahradnik, J.A. Teixeira, Hydrodynamic model for threephase internal- and external-loop airlift reactors, Chem. Eng. Sci. 54(21) (1999) 5253-5258. [12] J.C. Merchuk, I. Berzin, Distribution of energy dissipation in airlift reactors, Chem. Eng. Sci. 50(14) (1995) 2225-2233. [13] T. Yang, S.J. Geng, C. Yang, Q.S. Huang, Hydrodynamics and mass transfer in an internal airlift slurry reactor for process intensification, Chem. Eng. Sci. 184(2018) 126-133. [14] T.R. Cao, W.P. Zhang, J.C. Cheng, C. Yang, Comparative experimental study on reactive crystallization of Ni(OH)2 in an airlift-loop reactor and a stirred reactor, Chin. J. Chem. Eng. 26(1) (2018) 196-206. [15] R. Davarnejad, E. Bagheripoor, A. Sahraei, CFD simulation of scale influence on the hydrodynamics of an internal loop airlift reactor, Engineering 04(10) (2012) 668-674. [16] L.M. Chen, Z.S. Bai, CFD simulation of the hydrodynamics in an industrial scale cyclohexane oxidation airlift loop reactor, Chem. Eng. Res. Des. 119(2017) 33-46. [17] Y.Y. Xu, L.J. Luo, J.Q. Yuan, CFD simulations to portray the bubble distribution and the hydrodynamics in an annulus sparged air-lift bioreactor, Can. J. Chem. Eng. 89(2) (2011) 360-368. [18] A. Volk, U. Ghia, C. Stoltz, Effect of grid type and refinement method on CFD-DEM solution trend with grid size, Powder Technol. 311(2017) 137-146. [19] H. Pineda, J. Biazussi, F. López, B. Oliveira, R.D.M. Carvalho, A.C. Bannwart, N. Ratkovich, Phase distribution analysis in an Electrical Submersible Pump (ESP) inlet handling water-air two-phase flow using Computational Fluid Dynamics (CFD), J. Pet. Sci. Eng. 139(2016) 49-61. [20] B.E. Launder, D.B. Spalding, Mathematical Models of Turbulence, Von Karman Institute for Fluid Dynamics, 1972. [21] ANSYS Inc., ANSYS FLUENT 18.0 User's Guide, 2017. [22] W. Du, J.Z. Zhang, P.P. Lu, J. Xu, W.S. Wei, G.X. He, L.F. Zhang, Advanced understanding of local wetting behaviour in gas-liquid-solid packed beds using CFD with a volume of fluid (VOF) method, Chem. Eng. Sci. 170(2017) 378-392. [23] J.G. Li, B.L. Yang, CFD simulation of bubbling fluidized beds using a local-structuredependent drag model, Chem. Eng. J. 329(2017) 100-115. [24] R. Liu, Y. Liu, C.Z. Liu, Development of an efficient CFD-simulation method to optimize the structure parameters of an airlift sonobioreactor, Chem. Eng. Res. Des. 91(2) (2013) 211-220. [25] L.J. Luo, F.N. Liu, Y.Y. Xu, J.Q. Yuan, Hydrodynamics and mass transfer characteristics in an internal loop airlift reactor with different spargers, Chem. Eng. J. 175(1) (2011) 494-504. |