[1] H. Zhang, X. Zheng, Characteristics of hazardous chemical accidents in China:A statistical investigation, J. Loss Prev. Process Ind. 25(2012) 686-693. [2] S.K. Singh, M. Sharan, J.P. Issartel, Inverse modelling methods for identifying unknown releases in emergency scenarios:an overview, Int. J. Environ. Pollut. 57(2015) 68-91. [3] C.T. Allen, G.S. Young, S.E. Haupt, Improving pollutant source characterization by better estimating wind direction with a genetic algorithm, Atmos. Environ. 41(2007) 2283-2289. [4] X. Zheng, Z. Chen, Back-calculation of the strength and location of hazardous materials releases using the pattern search method, J. Hazard. Mater. 183(2010) 474-481. [5] X. Zheng, Z. Chen, Inverse calculation approaches for source determination in hazardous chemical releases, J. Loss Prev. Process Ind. 24(2011) 293-301. [6] I. Senocak, N.W. Henuartner, M.B. Short, W.B. Daniel, Stochastic event reconstruction of atmospheric contaminant dispersion using Bayesian inference, Atmos. Environ. 42(2008) 7718-7727. [7] P. Sreedharan, M.D. Sohn, A.J. Gadgil, W.W. Nazaroff, Systems approach to evaluating sensor characteristics for real-time monitoring of high-risk indoor contaminant releases, Atmos. Environ. 40(2006) 3490-3502. [8] F.K. Chow, B. Kosovic, S. Chan, Source inversion for contaminant plume dispersion in urban environments using building-resolving simulations, J. Appl. Meteorol. Climatol. 47(2008) 1553-1572. [9] P. Xin, F. Khan, S. Ahmed, Dynamic hazard identification and scenario mapping using Bayesian network, Process Saf. Environ. Prot. 105(2017) 143-155. [10] A. Keats, E. Yee, F.S. Lien, Bayesian inference for source determination with applications to a complex urban environment, Atmos. Environ. 41(2007) 465-479. [11] E. Yee, F.S. Lien, A. Keats, A.R. D'Amours, Bayesian inversion of concentration data:Source reconstruction in the adjoint representation of atmospheric diffusion, J. Wind Eng. Ind. Aerodyn. 96(2008) 1805-1816. [12] S. Guo, R. Yang, H. Zhang, W. Weng, W. Fan, Source identification for unsteady atmospheric dispersion of hazardous materials using Markov Chain Monte Carlo method, Int. J. Heat Mass Transf. 52(2009) 3955-3962. [13] S.K. Singh, R. Rani, A least-squares inversion technique for identification of a point release:Application to Fusion Field Trials 2007, Atmos. Environ. 92(2014) 104-117. [14] F. Li, J. Niu, An inverse approach for estimating the initial distribution of volatile organic compounds in dry building material, Atmos. Environ. 39(2005) 1447-1455. [15] S.L. Reich, D. Gomez, L. Dawidowski, Artificial neural network for the identification of unknown air pollution sources, Atmos. Environ. 33(1999) 3045-3052. [16] L.C. Thomson, B. Hirst, G. Gibson, S. Gillespie, P. Jonathan, K.D. Skeldon, M.J. Padgett, An improved algorithm for locating a gas source using inverse methods, Atmos. Environ. 41(2007) 1128-1134. [17] S.E. Haupt, A. Beyer-Lout, K.J. Long, G.S. Young, Assimilating concentration observations for transport and dispersion modeling in a meandering wind field, Atmos. Environ. 43(2009) 1329-1338. [18] A. Khlaifi, A. Ionescu, Y. Candau, Pollution source identification using a coupled diffusion model with a genetic algorithm, Math. Comput. Simul. 79(2009) 3500-3510. [19] J. Wang, R. Zhang, Y. Yan, X. Dong, J. Li, Locating hazardous gas leaks in the atmosphere via modified genetic, MCMC and particle swarm optimization algorithms, Atmos. Environ. 157(2017) 27-37. [20] G. Cervone, P. Franzese, A. Grajdeanu, Characterization of atmospheric contaminant sources using adaptive evolutionary algorithms, Atmos. Environ. 44(2010) 3787-3796. [21] R. Wang, W. Zheng, C. Liang, T. Tang, An integrated hazard identification method based on the hierarchical Colored Petri Net, Saf. Sci. 88(2016) 166-179. [22] A. Keats, E. Yee, F.S. Lien, Information-driven receptor placement for contaminant source determination, Environ. Model. Softw. 25(2010) 1000-1013. [23] D. Ucinski, M. Patan, Sensor network design for the estimation of spatially distributed processes, Int. J. Appl. Math. Comput. Sci. 20(2010) 459-481. [24] T. Zhang, Q. Chen, Identification of contaminant sources in enclosed spaces by a single sensor, Indoor Air 17(2007) 439-449. [25] T.A. Foster-Wittig, E.D. Thoma, J.D. Albertson, Estimation of point source fugitive emission rates from a single sensor time series:A conditionally-sampled Gaussian plume reconstruction, Atmos. Environ. 115(2015) 101-109. [26] S.E. Haupt, G.S. Young, C.T. Allen, Validation of a receptor-dispersion model coupled with a genetic algorithm using synthetic data, J. Appl. Meteorol. Climatol. 45(2006) 476-490. [27] G. Cervone, P. Franzese, Monte Carlo source detection of atmospheric emissions and error functions analysis, Comput. Geosci. 36(2010) 902-909. [28] S.E. Haupt, G.S. Young, C.T. Allen, A genetic algorithm method to assimilate sensor data for a toxic contaminant release, J. Comput. 2(2007) 85-93. [29] D. Ma, W. Tan, Z. Zhang, J. Hu, Gas emission source term estimation with 1-step nonlinear partial swarm optimization-Tikhonov regularization hybrid method, Chin. J. Chem. Eng. 26(2018) 356-363. [30] D. Ma, W. Tan, Z. Zhang, J. Hu, Parameter identification for continuous point emission source based on Tikhonov regularization method coupled with particle swarm optimization algorithm, J. Hazard. Mater. 325(2017) 239-250. [31] R.L. Haupt, S.E. Haupt, Practical Genetic Algorithms, 2nd ed., John Wiley & Sons, New Jersey, 2004, pp. 101-103. [32] D.A. Crowl, J.F. Louvar, Chemical Process Safety:Fundamentals with Applications, 2nd ed., Prentice Hall PTR, New Jersey, 2002, pp. 171-194. [33] S. Fairhurst, R.M. Turner, Toxicological assessments in relation to major hazards, J. Hazard. Mater. 33(1993) 215-227. |