[1] P.K. Ajikumar,W.H. Xiao, K.E.J. Tyo, Y.Wang, F. Simeon, E. Leonard, Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli, Science 330 (6000) (2010) 70-74.[2] Y.R. Zhao, J.M. Yang, B. Qin, Y.H. Li, Y.Z. Sun, S.Z. Su, Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway, Appl. Microbiol. Biotechnol. 90 (6) (2011) 1915-1922.[3] X.M. Lv, H.M. Xu, H.W. Yu, Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli, Appl. Microbiol. Biotechnol. 97 (6) (2013) 2357-2365.[4] V.J.J. Martin, D.J. Pitera, S.T. Withers, J.D. Newman, J.D. Keasling, Engineering a mevalonate pathway in Escherichia coli for production of terpenoids, Nat. Biotechnol. 21 (2003) 796-802.[5] J. Yang, L. Zhu, W.Q. Fu, Y.J. Lin, J.P. Lin, P.L. Cen, Improved 5-aminolevulinic acid productionwith recombinant Escherichia coli by a short-termdissolved oxygen shock in fed-batch fermentation, Chin. J. Chem. Eng. 21 (11) (2013) 1291-1295.[6] M.T. Huang, Y.Y. Chen, j.z. Liu, Chromosomal engineering of Escherichia coli for efficient production of coenzyme Q10, Chin. J. Chem. Eng. 22 (5) (2014) 559-569.[7] O. Choi, C.Z. Wu, S.Y. Kang, J.S. Ahn, T.B. Uhm, Y.S. Hong, Biosynthesis of plantspecific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli, J. Ind. Microbiol. Biotechnol. 38 (10) (2011) 1657-1665.[8] R.M. Lennen, D.J. Braden, R.M. West, A.J. Dumesic, B.F. Pfleger, A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes, Biotechnol. Bioeng. 106 (2) (2010) 193-202.[9] A. Schirme, M.A. Rude, X.Z. Li, E. Popova, S.B. Cardayre, Microbial biosynthesis of alkanes, Science 329 (5991) (2010) 559-562.[10] J. Blazeck, H. Alper, Systems metabolic engineering: genome-scale models and beyond, Biotechnol. J. 5 (7) (2010) 647-659.[11] J. Sun, Z.Y. Shao, H. Zhao, N. Nair, F. Wen, J.H. Xu, Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae, Biotechnol. Bioeng. 109 (8) (2012) 2082-2092.[12] H. Alper, C. Fischer, E. Nevoigt, G. Stephanopoulos, Tuning genetic control through promoter engineering, Proc. Natl. Acad. Sci. U. S. A. 102 (36) (2005) 12678-12683.[13] Y.X. Duan, T. Chen, X. Chen, J.Y.Wang, X.M. Zhao, Enhanced riboflavin production by expressing heterologous riboflavin operon from B. cereus ATCC14579 in Bacillus subtilis, Chin. J. Chem. Eng. 18 (1) (2010) 129-136.[14] Y.F. Liu, G.H. He, L.H. Ding, H. Dou, J. Ju, B.J. Li, Experimental and CFD studies on the performance of microfiltration enhanced by a turbulence promoter, Chin. J. Chem. Eng. 20 (4) (2012) 617-624.[15] K. Terpe, Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems, Appl. Microbiol. Biotechnol. 72 (2) (2006) 211-222.[16] F.W. Studier, B.A. Moffatt, Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes, J. Mol. Biol. 189 (1) (1986) 113-130.[17] P. Davanloo, A.H. Rosenberg, J.J. Dunn, W. Studier, Cloning and expression of the gene for bacteriophage T7 RNA polymerase, Proc. Natl. Acad. Sci. U. S. A. 81 (7) (1984) 2035-2039.[18] C.M. Elvin, P.R. Thompson, M.E. Argall, P. Hendry, N.P. Stamford, P.E. Lilley, N.E. Dixon, Modified bacteriophage-lambda promoter vectors for overproduction of proteins in E. coli, Gene 87 (1) (1990) 123-126.[19] W.Q. Lu, Y.J. Shi, S.W. He, Y.Z. Fei, K. Yu, H.W. Yu, Enhanced production of CoQ10 by constitutive overexpression of 3-demethyl ubiquinone-9 3-methyltransferase under tac promoter in Rhodobacter sphaeroides, Biochem. Eng. J. 72 (2013) 42-47.[20] J.E. Bailey, Toward a science of metabolic engineering, Science 252 (5013) (1991) 1668-1675.[21] E. Young, H. Alper, Synthetic biology: tools to design, build, and optimize cellular processes, J. Biomed. Biotechnol. 2010 (2010) 1-12.[22] D.K. Hawley, W.R. McClure, Compilation and analysis of E. coli promoter DNA sequences, Nucleic Acids Res. 11 (8) (1983) 2237-2255.[23] J.D. Keasling, Manufacturing molecules through metabolic engineering, Science 330 (6009) (2010) 1355-1358.[24] B. Charpentier, C. Branlant, The Escherichia coli gapA gene is transcribed by the vegetative RNA polymerase holoenzyme E sigma 70 and by the heat shock RNA polymerase E sigma 32, J. Bacteriol. 176 (3) (1994) 830-839.[25] S. Braatsch, S. Helmark, H. Kranz, B. Koebmann, P.R. Jensen, Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning, Biotechniques 45 (5) (2008) 335-337.[26] T.V. Karpinets, M.F. Romine, D.D. Schmoyer, G.H. Kora, M.H. Syed, M.R. Leuze, Shewanella knowledgebase: Integration of the experimental data and computational predictions suggests a biological role for transcription of intergenic regions, Database (Oxford) (2010) baq012 ([2014-06-07], http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911847/).[27] B. Volkmer, M. Heinemann, Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling, PLoS One 6 (2011) e0023126.[28] O. Akinterinwa, P.C. Cirino, Anaerobic obligatory xylitol production in Escherichia coli strains devoid of native fermentation pathways, Appl. Environ. Microbiol. 77 (2) (2011) 706-709.[29] J.W. Chin, Analysis of NADPH supply during xylitol production by engineered Escherichia coli, Biotechnol. Bioeng. 102 (1) (2008) 209-220.[30] O. Akinterinwa, P.C. Cirino, Heterologous expression of D-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose, Metab. Eng. 11 (1) (2009) 48-55.[31] P.C. Cirino, J.W. Chin, L.O. Ingram, Engineering Escherichia coli for xylitol production from glucose-xylose mixtures, Biotechnol. Bioeng. 95 (6) (2006) 1167-1176.[32] R. Khankal, J.W. Chin, P.C. Cirino, Role of xylose transporters in xylitol production from engineered Escherichia coli, J. Biotechnol. 134 (3-4) (2008) 246-252.[33] D.A. Siegele, J.C. Hu, Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations, Proc. Natl. Acad. Sci. U. S. A. 94 (15) (1997) 8168-8172.[34] S. Mnaimneh, A.P. Davierwala, J. Haynes, J.Moffat,W.T. Peng, W. Zhang, Exploration of essential gene functions via titratable promoter alleles, Cell 118 (1) (2004) 31-44. |