[1] A. Khormali, Asphaltene precipitation and inhibition in carbonate reservoirs, Pet. Sci. Technol. 35(5) (2017) 515-521. [2] A. Danesh, G. Henderson, D. Krinis, J. Peden, Asphaltene deposition in miscible gas flooding of oil reservoirs, Chem. Eng. Res. Des. 66(1988) 339-344. [3] Z. Nasri, B. Dabir, Network modeling of asphaltene deposition during two-phase flow in carbonate, J. Pet. Sci. Eng. 116(2014) 124-135. [4] L. Minssieux, Core damage from crude asphaltene deposition, International Symposium on Oilfield Chemistry, Society of Petroleum Engineers, 1997. [5] F. Ameli, A. Hemmati-Sarapardeh, B. Dabir, A.H. Mohammadi, Determination of asphaltene precipitation conditions during natural depletion of oil reservoirs:A robust compositional approach, Fluid Phase Equilib. 412(2016) 235-248. [6] K. Leontaritis, J. Amaefule, R. Charles, A systematic approach for the prevention and treatment of formation damage caused by asphaltene deposition, SPE Prod. Facil. 9(03) (1994) 157-164. [7] T. Youssef, M. Chadli, H.R. Karimi, R. Wang, Actuator and sensor faults estimation based on proportional integral observer for TS fuzzy model, J. Frankl. Inst. 354(6) (2017) 2524-2542. [8] S.T. Kandukuri, A. Klausen, H.R. Karimi, K.G. Robbersmyr, A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management, Renew. Sustain. Energy Rev. 53(2016) 697-708. [9] S.K. Kommuri, M. Defoort, H.R. Karimi, K.C. Veluvolu, A robust observer-based sensor fault-tolerant control for PMSM in electric vehicles, IEEE Trans. Ind. Electron. 63(12) (2016) 7671-7681. [10] M. Lashkarbolooki, S. Ayatollahi, M. Riazi, Effect of salinity, resin, and asphaltene on the surface properties of acidic crude oil/smart water/rock system, Energy Fuel 28(11) (2014) 6820-6829(2014/11/20). [11] M. Mohammadi, M. Dadvar, B. Dabir, Application of response surface methodology for optimization of the stability of asphaltene particles in crude oil by TiO2/SiO2 nanofluids under static and dynamic conditions, J. Dispers. Sci. Technol. 39(3) (2018) 431-442. [12] K. Xie, K. Karan, Kinetics and thermodynamics of asphaltene adsorption on metal surfaces:A preliminary study, Energy Fuel 19(4) (2005) 1252-1260. [13] W. Abdallah, S. Taylor, Surface characterization of adsorbed asphaltene on a stainless steel surface, Nucl. Instrum. Methods Phys. Res., Sect. B 258(1) (2007) 213-217. [14] A.W. Marczewski, M. Szymula, Adsorption of asphaltenes from toluene on mineral surface, Colloids Surf. A Physicochem. Eng. Asp. 208(1-3) (2002) 259-266. [15] B. Marlow, G. Sresty, R. Hughes, O. Mahajan, Colloidal stabilization of clays by asphaltenes in hydrocarbon media, Colloids Surf. 24(4) (1987) 283-297. [16] N.N. Nassar, A. Hassan, P. Pereira-Almao, Comparative oxidation of adsorbed asphaltenes onto transition metal oxide nanoparticles, Colloids Surf. A Physicochem. Eng. Asp. 384(1-3) (2011) 145-149. [17] N.N. Nassar, A. Hassan, P. Pereira-Almao, Effect of the particle size on asphaltene adsorption and catalytic oxidation onto alumina particles, Energy Fuel 25(9) (2011) 3961-3965. [18] X. Li, D. Zhu, X. Wang, Evaluation on dispersion behavior of the aqueous copper nano-suspensions (vol 310, pg 456, 2007), J. Colloid Interface Sci. 314(2) (2007) 749. [19] X. Wei, L. Wang, Synthesis and thermal conductivity of microfluidic copper nanofluids, Particuology 8(3) (2010) 262-271. [20] S.A. Amirsadat, B. Moradi, A.Z. Hezave, S. Najimi, M.H. Farsangi, Investigating the effect of nano-silica on efficiency of the foam in enhanced oil recovery, Korean J. Chem. Eng. 34(12) (2017) 3119-3124. [21] H. Son, H. Kim, G. Lee, J. Kim, W. Sung, Enhanced oil recovery using nanoparticlestabilized oil/water emulsions, Korean J. Chem. Eng. 31(2) (2014) 338-342. [22] Y. Li, S. Tung, E. Schneider, S. Xi, A review on development of nanofluid preparation and characterization, Powder Technol. 196(2) (2009) 89-101. [23] C.O. Metin, L.W. Lake, C.R. Miranda, Q.P. Nguyen, Stability of aqueous silica nanoparticle dispersions, J. Nanopart. Res. 13(2) (2011) 839-850. [24] M. Mohammed, T. Babadagli, Wettability alteration:A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems, Adv. Colloid Interf. Sci. 220(2015) 54-77. [25] O. Torsater, B. Engeset, L. Hendraningrat, S. Suwarno, Improved oil recovery by nanofluids flooding:An experimental study, SPE Kuwait international petroleum conference and exhibition, Society of Petroleum Engineers, 2012. [26] R. Nazari Moghaddam, A. Bahramian, Z. Fakhroueian, A. Karimi, S. Arya, Comparative study of using nanoparticles for enhanced oil recovery:Wettability alteration of carbonate rocks, Energy Fuel 29(4) (2015) 2111-2119. [27] N.N. Nassar, Asphaltene adsorption onto alumina nanoparticles:Kinetics and thermodynamic studies, Energy Fuel 24(8) (2010) 4116-4122. [28] R. Hashemi, N.N. Nassar, P. Pereira-Almao, Transport behavior of multimetallic ultradispersed nanoparticles in an oil-sands-packed bed column at a high temperature and pressure, Energy Fuel 26(3) (2012) 1645-1655. [29] M. Mohammadi, M. Akbari, Z. Fakhroueian, A. Bahramian, R. Azin, S. Arya, Inhibition of asphaltene precipitation by TiO2, SiO2, and ZrO2 nanofluids, Energy Fuel 25(7) (2011) 3150-3156. [30] C.A. Franco, N.N. Nassar, M.A. Ruiz, P. Pereira-Almao, F.B. Cortés, Nanoparticles for inhibition of asphaltenes damage:Adsorption study and displacement test on porous media, Energy Fuel 27(6) (2013) 2899-2907. [31] B.J.A. Tarboush, M.M. Husein, Adsorption of asphaltenes from heavy oil onto in situ prepared NiO nanoparticles, J. Colloid Interface Sci. 378(1) (2012) 64-69. [32] L. Hendraningrat, O. Torsaeter, Unlocking the potential of metal oxides nanoparticles to enhance the oil recovery, Offshore Technology Conference-Asia, 2014:Offshore Technology Conference, 2014. [33] F. Haaf, A. Sanner, F. Straub, Polymers of N-vinylpyrrolidone:Synthesis, characterization and uses, Polym. J. 17(1) (1985) 143. [34] R. Si, Y.-W. Zhang, L.-P. You, C.-H. Yan, Self-organized monolayer of nanosized ceria colloids stabilized by poly (vinylpyrrolidone), J. Phys. Chem. B 110(12) (2006) 5994-6000. [35] B.E. Rabinow, Nanosuspensions in drug delivery, Nat. Rev. Drug Discov. 3(9) (2004) 785. [36] C.-j. Kim, Advanced Pharmaceutics:Physicochemical Principles, CRC Press, 2004. [37] A.K. Kulshreshtha, O.N. Singh, G.M. Wall, Pharmaceutical Suspensions:From Formulation Development to Manufacturing, Springer, 2009. [38] L. Wu, J. Zhang, W. Watanabe, Physical and chemical stability of drug nanoparticles, Adv. Drug Deliv. Rev. 63(6) (2011) 456-469. [39] H.R.E. Gahrooei, M.H. Ghazanfari, Application of a water based nanofluid for wettability alteration of sandstone reservoir rocks to preferentially gas wetting condition, J. Mol. Liq. 232(2017) 351-360. [40] C. Metin, Characterization of Nanoparticle Transport in Flow Through Permeable Media, PhD Thesis, University of Texas at Austin, USA, 2012. [41] C.A. Franco, M.M. Lozano, S. Acevedo, N.N. Nassar, F.B. Cortés, Effects of resin I on asphaltene adsorption onto nanoparticles:A novel method for obtaining asphaltenes/resin isotherms, Energy Fuel 30(1) (2015) 264-272. [42] I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc. 38(11) (1916) 2221-2295. [43] S. Brunauer, P. Emmett, E. Teller, Absorption of gases in multimolecular layers, J. Am. Chem. Soc. 60(1938) 309-319. |