[1] S. Li, X. Yang, S. Yang, M. Zhu, X. Wang, Technology prospecting on enzymes:Application, marketing and engineering, Comput. Struct. Biotechnol. J. 2(2012) e201209017. [2] F.H. Arnold, Enzyme engineering reaches the boiling point, Proc. Natl. Acad. Sci. U. S. A. 95(1998) 2035-2036. [3] R.A. Sheldon, D. Brady, The limits to biocatalysis:Pushing the envelope, Chem. Commun. 54(2018) 6088-6104. [4] M.T. Reetz, Biocatalysis in Organic Chemistry and Biotechnology:Past, Present, and Future, J. Am. Chem. Soc. 135(2013) 12480-12496. [5] K. Petroll, D. Kopp, A. Care, P.L. Bergquist, A. Sunna, Tools and strategies for constructing cell-free enzyme pathways, Biotechnol. Adv. 37(2019) 91-108. [6] W. Guo, J. Sheng, X. Feng, Mini-review:In vitro metabolic engineering for biomanufacturing of high-value products, Comput. Struct. Biotechnol. J. 15(2017) 161-167. [7] C.E. Hodgman, M.C. Jewett, Cell-free synthetic biology:Thinking outside the cell, Metab. Eng. 14(2012) 261-269. [8] F. Caschera, Bacterial cell-free expression technology to in vitro systems engineering and optimization, Synth. Syst. Biotechnol. 2(2017) 97-104. [9] E.D. Carlson, R. Gan, C.E. Hodgman, M.C. Jewett, Cell-free protein synthesis:Applications come of age, Biotechnol. Adv. 30(2012) 1185-1194. [10] J.G. Perez, J.C. Stark, M.C. Jewett, Cell-free synthetic biology:Engineering beyond the cell, Cold Spring Harb. Perspect. Biol. 8(2016), a023853. [11] Y. Lu, Cell-free synthetic biology:Engineering in an open world, Synth. Syst. Biotechnol. 2(2017) 23-27. [12] R.L. Stafford, M.L. Matsumoto, G. Yin, Q. Cai, J.J. Fung, H. Stephenson, A. Gill, M. You, S.H. Lin, W.D. Wang, M.R. Masikat, X. Li, K. Penta, A.R. Steiner, R. Baliga, C.J. Murray, C.D. Thanos, T.J. Hallam, A.K. Sato, In vitro Fab display:A cell-free system for IgG discovery, Protein Eng. Des. Sel. 27(2014) 97-109. [13] C.E. Hodgman, M.C. Jewett, Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis, Biotechnol. Bioeng. 110(2013) 2643-2654 https://doi.org/10.1002/bit.24942. [14] F. Caschera, V. Noireaux, Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system, Biochimie. 99(2014) 162-168. [15] J.W. Chin, T.A. Cropp, J.C. Anderson, M. Mukherji, Z. Zhang, P.G. Schultz, An expanded eukaryotic genetic code, Science 301(80) (2003) 964-967. [16] R.B. Quast, I. Claussnitzer, H. Merk, S. Kubick, M. Gerrits, Synthesis and site-directed fluorescence labeling of azido proteins using eukaryotic cell-free orthogonal translation systems, Anal. Biochem. 451(2014) 4-9. [17] Q.M. Dudley, A.S. Karim, M.C. Jewett, Cell-free metabolic engineering:Biomanufacturing beyond the cell, Biotechnol. J. 10(2015) 69-82. [18] C. Catherine, K.H. Lee, S.J. Oh, D.M. Kim, Cell-free platforms for flexible expression and screening of enzymes, Biotechnol. Adv. 31(2013) 797-803. [19] J.M. Sperl, V. Sieber, Multienzyme Cascade Reactions-Status and Recent Advances, ACS Catal. 8(2018) 2385-2396. [20] M. Gorecki, E.P. Zeelon, Cell-free synthesis of rat parotid preamylase, J. Biol. Chem. 254(1979) 525-529. [21] S. Chong, Overview of cell-free protein synthesis:Historic landmarks, commercial systems, and expanding applications, Curr. Protoc. Mol. Biol. 2014(2014) 16.30.1-16.30.11. [22] N.E. Gregorio, M.Z. Levine, J.P. Oza, A user's guide to cell-free protein synthesis, Methods Protoc. 2(2019) 24. [23] J.P. Hunt, S.O. Yang, K.M. Wilding, B.C. Bundy, The growing impact of lyophilized cell-free protein expression systems, Bioengineered. 8(2017) 325-330. [24] C.G. Park, M.A. Kwon, J.K. Song, D.M. Kim, Cell-free synthesis and multifold screening of Candida antarctica lipase B (CalB) variants after combinatorial mutagenesis of hot spots, Biotechnol. Prog. 27(2011) 47-53. [25] J. Li, T.J. Lawton, J.S. Kostecki, A. Nisthal, J. Fang, S.L. Mayo, A.C. Rosenzweig, M.C. Jewett, Cell-free protein synthesis enables high yielding synthesis of an active multicopper oxidase, Biotechnol. J. 11(2016) 212-218. [26] A.S.M. Salehi, M.T. Smith, A.M. Bennett, J.B. Williams, W.G. Pitt, B.C. Bundy, Cell-free protein synthesis of a cytotoxic cancer therapeutic:Onconase production and a justadd-water cell-free system, Biotechnol. J. 11(2016) 274-281. [27] H.J. Lim, Y.J. Park, Y.J. Jang, J.E. Choi, J.Y. Oh, J.H. Park, J.K. Song, D.M. Kim, Cell-free synthesis of functional phospholipase A1 from Serratia sp, Biotechnol. Biofuels. 9(2016) 1-7. [28] R. Apweiler, H. Hermjakob, N. Sharon, On the Frequency of Protein Glycosylation, as Deduced from Analysis of the SWISS-PROT Database, Biophys. Acta-Gen. Subj 1473(1999) 4-8. [29] H. Nothaft, C.M. Szymanski, Protein glycosylation in bacteria:sweeter than ever, Nat. Rev. Microbiol. 8(2010) 765-778. [30] K. Ohtsubo, J.D. Marth, Glycosylation in cellular mechanisms of health and disease, Cell. 126(2006) 855-867. [31] J.A. Schoborg, J.M. Hershewe, J.C. Stark, W. Kightlinger, J.E. Kath, T. Jaroentomeechai, A. Natarajan, M.P. DeLisa, M.C. Jewett, A cell-free platform for rapid synthesis and testing of active oligosaccharyltransferases, Biotechnol. Bioeng. 115(2018) 739-750. [32] C. Guarino, M.P. Delisa, A prokaryote-based cell-free translation system that ef fi ciently synthesizes glycoproteins, Glycobiology 22(2012) 596-601. [33] T. Jaroentomeechai, J.C. Stark, A. Natarajan, C.J. Glasscock, L.E. Yates, K.J. Hsu, M. Mrksich, M.C. Jewett, M.P. Delisa, Single-pot glycoprotein biosynthesis using a cell-free transcription-translation system enriched with glycosylation machinery, Nat. Commun. 9(2018) 1-11. [34] T. Hunter, Protein kinases and phosphatases:The Yin and Yang of protein phosphorylation and signaling, Cell 80(1995) 225-236. [35] D.T. Rogerson, A. Sachdeva, K. Wang, T. Haq, A. Kazlauskaite, S.M. Hancock, N. Huguenin-Dezot, M.M.K. Muqit, A.M. Fry, R. Bayliss, J.W. Chin, Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog, Nat. Chem. Biol. 11(2015) 496-503. [36] I.U. Heinemann, A.J. Rovner, H.R. Aerni, S. Rogulina, L. Cheng, W. Olds, J.T. Fischer, D. Söll, F.J. Isaacs, J. Rinehart, Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion, FEBS Lett. 586(2012) 3716-3722. [37] J.P. Oza, H.R. Aerni, N.L. Pirman, K.W. Barber, C.M. Ter Haar, S. Rogulina, M.B. Amrofell, F.J. Isaacs, J. Rinehart, M.C. Jewett, Robust production of recombinant phosphoproteins using cell-free protein synthesis, Nat. Commun. 6(2015) 1-7. [38] J. Nielsen, Metabolic engineering, Appl. Microbiol. Biotechnol. 55(2001) 263-283. [39] J. Du, Z. Shao, H. Zhao, Engineering microbial factories for synthesis of value-added products, J Ind Microbiol Biotechnol 38(2011) 873-890. [40] V.F. Wendisch, M. Bott, B.J. Eikmanns, Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids, Curr. Opin. Microbiol. 9(2006) 268-274. [41] B. Erickson, Janet E. Nelson, P. Winters, Perspective on opportunities in industrial biotechnology in renewable chemicals, Biotechnol. J. 7(2012) 176-185. [42] B.M. Woolston, S. Edgar, G. Stephanopoulos, Metabolic engineering:Past and future, Annu. Rev. Chem. Biomol. Eng. 4(2013) 259-288. [43] A.S. Karim, M.C. Jewett, A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery, Metab. Eng. 36(2016) 116-126. [44] J.K. Guterl, D. Garbe, J. Carsten, F. Steffler, B. Sommer, S. Reiße, A. Philipp, M. Haack, B. Rühmann, A. Koltermann, U. Kettling, T. Brück, V. Sieber, Cell-free metabolic engineering:Production of chemicals by minimized reaction cascades, ChemSusChem. 5(2012) 2165-2172. [45] L. Babich, L.J.C. Van Hemert, A. Bury, A.F. Hartog, P. Falcicchio, J. Van Der Oost, T. Van Herk, R. Wever, F.P.J.T. Rutjes, Synthesis of non-natural carbohydrates from glycerol and aldehydes in a one-pot four-enzyme cascade reaction, Green Chem. 13(2011) 2895-2900. [46] H.J. Lim, D.M. Kim, Cell-free metabolic engineering:recent developments and future prospects, Methods Protoc. 2(2019) 33. [47] J.E. Kay, M.C. Jewett, Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol, Metab. Eng. 32(2015) 133-142. [48] Y. Ravikumar, S.P. Nadarajan, T. Hyeon Yoo, C.S. Lee, H. Yun, Unnatural amino acid mutagenesis-based enzyme engineering, Trends Biotechnol. 33(2015) 462-470. [49] I. Drienovská, C. Mayer, C. Dulson, G. Roelfes, A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue, Nat. Chem. 10(2018) 946-952. [50] A. Deiters, Principles and applications of the photochemical control of cellular processes, ChemBioChem. 11(2010) 47-53. [51] A.S. Baker, A. Deiters, Optical control of protein function through unnatural amino acid mutagenesis and other optogenetic approaches, ACS Chem. Biol. 9(2014) 1398-1407. [52] J.C.Y. Wu, C.H. Hutchings, M.J. Lindsay, C.J. Werner, B.C. Bundy, Enhanced enzyme stability through site-directed covalent immobilization, J. Biotechnol. 193(2015) 83-90. [53] W. Gao, N. Bu, Y. Lu, Recent advances in cell-free unnatural protein synthesis, Shengwu Gongcheng Xuebao/Chinese J. Biotechnol. 34(2018) 1371-1385. [54] W. Gao, E. Cho, Y. Liu, Y. Lu, Advances and challenges in cell-free incorporation of unnatural amino acids into proteins, Front. Pharmacol. 10(2019) 1-8. |