[1] M.J. Darabi Mahboub, J.L. Dubois, F. Cavani, M. Rostamizadeh, G.S. Patience, Catalysis for the synthesis of methacrylic acid and methyl methacrylate, Chem. Soc. Rev. 47(2018) 7703-7738. [2] K. Nagai, New developments in the production of methyl methacrylate, Appl. Catal. A Gen. 221(2001) 367-377. [3] M. Craven, D. Xiao, C. Kunstmann-Olsen, E.F. Kozhevnikova, F. Blanc, A. Steiner, I.V. Kozhevnikov, Oxidative desulfurization of diesel fuel catalyzed by polyoxometalate immobilized on phosphazene-functionalized silica, Appl. Catal. B Environ. 231(2018) 82-91. [4] M. Chamack, A.R. Mahjoub, H. Aghayan, Cesium salts of tungsten-substituted molybdophosphoric acid immobilized onto platelet mesoporous silica:efficient catalysts for oxidative desulfurization of dibenzothiophene, Chem. Eng. J. 255(2014) 686-694. [5] R. Ghubayra, C. Nuttall, S. Hodgkiss, M. Craven, E.F. Kozhevnikova, I.V. Kozhevnikov, Oxidative desulfurization of model diesel fuel catalyzed by carbon-supported heteropoly acids, Appl. Catal. B Environ. 253(2019) 309-316. [6] F. Jing, B. Katryniok, E. Bordes-Richard, S. Paul, Improvement of the catalytic performance of supported (NH4)3HPMo11VO40 catalysts in isobutane selective oxidation, Catal. Today 203(2013) 32-39. [7] J. Ding, T. Ma, M. Cui, R. Shao, R. Guan, P. Wang, Gas phase dehydration of glycerol to acrolein over Cs2.5H0.5PW12O40/Zr-MCM-41 catalysts prepared by supercritical impregnation, Mol. Catal. 461(2018) 1-9. [8] A. Patel, V. Brahmkhatri, Kinetic study of oleic acid esterification over 12-tungstophosphoric acid catalyst anchored to different mesoporous silica supports, Fuel Process. Technol. 113(2013) 141-149. [9] S. Gopinath, P. Vinoth Kumar, P. Sahaya Murphin Kumar, K.A. Yasar Arafath, S. Sivanesan, P. Baskaralingam, Cs-tungstosilicic acid/Zr-KIT-6 for esterification of oleic acid and transesterification of non-edible oils for green diesel production, Fuel 234(2018) 824-835. [10] K.M. Parida, S. Rana, S. Mallick, D. Rath, Cesium salts of heteropoly acid immobilized mesoporous silica:an efficient catalyst for acylation of anisole, J. Colloid Interface Sci. 350(2010) 132-139. [11] Y. Li, Z. Wang, R. Chen, Y. Wang, W. Xing, J. Wang, J. Huang, The hydroxylation of benzene to phenol over heteropolyacid encapsulated in silica, Catal. Commun. 55(2014) 34-37. [12] K.H. Bhadra, G.D. Yadav, Solventless triarylmethane synthesis via hydroxyalkylation of anisole with benzaldehyde by modified heteropoly acid on mesocellular foam silica (MCF), Mol. Catal. 455(2018) 150-158. [13] T. Pinto, P. Arquillière, V. Dufaud, F. Lefebvre, Isomerization of n-hexane over PtH3PW12O40/SBA-15 bifunctional catalysts:effect of the preparation method on catalytic performance, Appl. Catal. A Gen. 528(2016) 44-51. [14] M. Kanno, T. Yasukawa, W. Ninomiya, K. Ooyachi, Y. Kamiya, Catalytic oxidation of methacrolein to methacrylic acid over silica-supported 11-molybdo-1-vanadophosphoric acid with different heteropolyacid loadings, J. Catal. 273(2010) 1-8. [15] M. Kanno, Y.-k. Miura, T. Yasukawa, T. Hasegawa, W. Ninomiya, K. Ooyachi, H. Imai, T. Tatsumi, Y. Kamiya, 11-Molybdo-1-vanadophosphoricacid H4PMo11VO40 supported on ammonia-modified silica as highly active and selective catalyst for oxidation of methacrolein, Catal. Commun. 13(2011) 59-62. [16] T. Blasco, A. Corma, A. Martínez, P. Martínez-Escolano, Supported heteropolyacid (HPW) catalysts for the continuous alkylation of isobutane with 2-butene:The benefit of using MCM-41 with larger pore diameters, J. Catal. 177(1998) 306-313. [17] C. Tang, H.F. Wang, Q. Zhang, Multiscale principles to boost reactivity in gasinvolving energy electrocatalysis, Acc. Chem. Res. 51(2018) 881-889. [18] X. Zhang, X. Cheng, Q. Zhang, Nanostructured energy materials for electrochemical energy conversion and storage:A review, J. Energy Chem. 25(2016) 967-984. [19] S.M. Xu, X. Liang, Z.C. Ren, K.X. Wang, J.S. Chen, Free-standing air cathodes based on 3D hierarchically porous carbon membranes:Kinetic overpotential of continuous macropores in Li-O2 batteries, Angew. Chem. Int. Ed. 57(2018) 6825-6829. [20] X. Zhou, X. Cheng, Y. Zhu, A.A. Elzatahry, A. Alghamdi, Y. Deng, D. Zhao, Ordered porous metal oxide semiconductors for gas sensing, Chin. Chem. Lett. 29(2018) 405-416. [21] C. Tang, M.-M. Titirici, Q. Zhang, A review of nanocarbons in energy electrocatalysis:Multifunctional substrates and highly active sites, J. Energy Chem. 26(2017) 1077-1093. [22] H. Arandiyan, Y. Wang, H. Sun, M. Rezaei, H. Dai, Ordered meso- and macroporous perovskite oxide catalysts for emerging applications, Chem. Commun. 54(2018) 6484-6502. [23] X. Ma, T. Wang, M. Zhang, W. Zhu, Z. Zhang, H. Zhang, Heteropoly acid supported on Cu-doped three-dimensionally ordered macroporous SiO2 as efficient catalyst for the selective oxidation of methacrolein, Catal. Lett. 148(2018) 660-670. [24] C. Marchal-Roch, R. Bayer, J.F. Moisan, A. Tézé, G. Hervé, Oxidative dehydrogenation of isobutyric acid:Characterization and modeling of vanadium containing polyoxometalate catalysts, Top. Catal. 3(1996) 407-419. [25] C. Marchal-Roch, N. Laronze, N. Guillou, A. Tézé, G. Hervé, Study of ammonium, mixed ammonium-cesium and cesium salts derived from (NH4)5[PMo11VIVO40] as isobutyric acid oxidation catalysts:Part I:Syntheses, structural characterizations and catalytic activity of the ammonium salts, Appl. Catal. A Gen. 199(2000) 33-44. [26] C. Rocchiccioli-Deltcheff, A. Aouissi, S. Launay, M. Fournier, Silica-supported 12-molybdophosphoric acid catalysts:Influence of the thermal treatments and of the Mo contents on their behavior, from IR, Raman, X-ray diffraction studies, and catalytic reactivity in the methanol oxidation, J. Mol. Catal. A Chem. 114(1996) 331-342. [27] N. Legagneux, J.-M. Basset, A. Thomas, F. Lefebvre, A. Goguet, J. Sá, C. Hardacre, Characterization of silica-supported dodecatungstic heteropolyacids as a function of their dehydroxylation temperature, Dalton Trans. (2009) 2235-2240. [28] S. Soled, S. Miseo, G. McVicker, W.E. Gates, A. Gutierrez, J. Paes, Preparation of bulk and supported heteropolyacid salts, Catal. Today 36(1997) 441-450. [29] G. Mestl, T. Ilkenhans, D. Spielbauer, M. Dieterle, O. Timpe, J. Kröhnert, F. Jentoft, H. Knözinger, R. Schlögl, Thermally and chemically induced structural transformations of Keggin-type heteropoly acid catalysts, Appl. Catal. A Gen. 210(2001) 13-34. [30] M. Langpape, J.M.M. Millet, U.S. Ozkan, M. Boudeulle, Study of cesium or cesiumtransition metal-substituted Keggin-type phosphomolybdic acid as isobutane oxidation catalysts:I. Structural characterization, J. Catal. 181(1999) 80-90. [31] C. Rocchiccioli-Deltcheff, A. Aouissi, M.M. Bettahar, S. Launay, M. Fournier, Catalysis by 12-Molybdophosphates:1. Catalytic reactivity of 12-molybdophosphoric acid related to its thermal behavior investigated through IR, Raman, polarographic, and Xray diffraction studies:A comparison with 12-molybdosilicic acid, J. Catal. 164(1996) 16-27. [32] B. Viswanadham, A. Srikanth, K.V.R. Chary, Characterization and reactivity of 11-molybdo-1-vanadophosphoric acid catalyst supported on zirconia for dehydration of glycerol to acrolein, J. Chem. Sci. 126(2014) 445-454. [33] Z. Li, L. Gao, S. Zheng, Investigation of the dispersion of MoO3 onto the support of mesoporous silica MCM-41, Appl. Catal. A Gen. 236(2002) 163-171. [34] Y.L. Cao, L. Wang, L.L. Zhou, G.J. Zhang, B.H. Xu, S.J. Zhang, Cs(NH4)xH3-xPMo11VO40 catalyzed selective oxidation of methacrolein to methacrylic acid:Effects of NH4+ on the structure and catalytic activity, Ind. Eng. Chem. Res. 56(2017) 653-664. [35] M. Sun, J. Zhang, C. Cao, Q. Zhang, Y. Wang, H. Wan, Significant effect of acidity on catalytic behaviors of Cs-substituted polyoxometalates for oxidative dehydrogenation of propane, Appl. Catal. A Gen. 349(2008) 212-221. [36] B.C. Gagea, Y. Lorgouilloux, Y. Altintas, P.A. Jacobs, J.A. Martens, Bifunctional conversion of n-decane over HPW heteropoly acid incorporated into SBA-15 during synthesis, J. Catal. 265(2009) 99-108. [37] Y.L. Cao, L. Wang, B.H. Xu, S.J. Zhang, The Chitin/Keggin-type heteropolyacid hybrid microspheres as catalyst for oxidation of methacrolein to methacrylic acid, Chem. Eng. J. 334(2018) 1657-1667. [38] L. Zhou, L. Wang, Y. Diao, R. Yan, S. Zhang, Cesium salts supported heteropoly acid for oxidation of methacrolein to methacrylic acid, Mol. Catal. 433(2017) 153-161. [39] H. Kim, J.C. Jung, D.R. Park, S.-H. Baeck, I.K. Song, Preparation of H5PMo10V2O40(PMo10V2) catalyst immobilized on nitrogen-containing mesoporous carbon (NMC) and its application to the methacrolein oxidation, Appl. Catal. A Gen. 320(2007) 159-165. [40] S. Yasuda, A. Iwakura, J. Hirata, M. Kanno, W. Ninomiya, R. Otomo, Y. Kamiya, Strong Brønsted acid-modified chromium oxide as an efficient catalyst for the selective oxidation of methacrolein to methacrylic acid, Catal. Commun. 125(2019) 43-47. [41] L. Zhou, S. Zhang, Z. Li, J. Scott, Z. Zhang, R. Liu, J. Yun, Selective oxidation of methacrolein to methacrylic acid over H4PMo11VO40/C3N4-SBA-15, RSC Adv. 9(2019) 34065-34075. |