[1] J.R. Peralta-Videa, M.L. Lopez, M. Narayan, G. Saupe, J. Gardea-Torresdey, The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain, Int. J. Biochem. Cell Biol. 41(2009) 1665-1677. [2] U. Jadhav, H. Hocheng, A review of recovery of metals from industrial waste, J. Achiev. Mater. Manuf. Eng. 54(2012) 159-167. [3] R. Wuana, F.E. Okieimen, Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation, ISRN Ecol. 2011(2011) 1-20. [4] U. Förstner, Water pollution: wastewater, in: In: Integrated Pollution Control, Springer, Berlin Heidelelberg, (1998) 197-238. [5] E. Barth, M. Ettinger, B.V. Salotto, Gt McDermott, Summary report on the effects of heavy metals on the biological treatment processes, J. Water Pollut. Control Fed. (1965) 86-96. [6] M. Friedlova, The influence of heavy metals on soil biological and chemical properties, J. Soil Water. Sci. 5(2010) 21-27. [7] V. Mushtakova, V. Fomina, V. Rogovin, Toxic effect of heavy metals on human blood neutrophils, Biol. Bull. 32(2005) 276-278. [8] G. Notarachille, F. Arnesano, V. Calò, D. Meleleo, Heavy metals toxicity: Effect of cadmium ions on amyloid beta protein 1-42. Possible implications for Alzheimer’s disease, Biometals 27(2014) 371-388. [9] J.M. Matés, J.A. Segura, F.J. Alonso, J. Márquez, Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms, Free Radic. Biol. Med. 49(2010) 1328-1341. [10] W. Shao, Q. Liu, X. He, H. Liu, A. Gu, Z. Jiang, Association between level of urinary trace heavy metals and obesity among children aged 6-19 years: NHANES 1999-2011, Environ. Sci. Pollut. Res. 24(2017) 11573-11581. [11] I. Shiue, Association of urinary arsenic, heavy metal, and phthalate concentrations with food allergy in adults: National health and nutrition examination survey, 2005-2006, Ann. Allergy Asthma Immunol. 111(2013) 421-423. [12] S. Podzimek, J. Prochazkova, L. Pribylova, J. Bártová, Z. Ulcová-Gallová, L. Mrklas, V. Stejskal, Effect of heavy metals on immune reactions in patients with infertility, Cas. Lek. Cesk. 142(2003) 285-288. [13] E. Lynch, R. Braithwaite, A review of the clinical and toxicological aspects of ‘traditional’(herbal) medicines adulterated with heavy metals, Expert Opin. Drug Saf. 4(2005) 769-778. [14] S.A. El Rehim, S. Sayyah, M. El Deeb, Electroplating of copper films on steel substrates from acidic gluconate baths, Appl. Sur. Sci. 165(2000) 249-254. [15] J.C. Hsieh, C.C. Hu, T.C. Lee, The synergistic effects of additives on improving the electroplating of zinc under high current densities, J. Electrochem. Soc. 155(2008) D675-D681. [16] V. Jassal, U. Shanker, B. Kaith, S. Shankar, Green synthesis of potassium zinc hexacyanoferrate nanocubes and their potential application in photocatalytic degradation of organic dyes, RSC Adv. 5(2015) 26141-26149. [17] M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: A review, J. Hazard. Mater. 211(2012) 317-331. [18] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage. 92(2011) 407-418. [19] F. Veglio, F. Beolchini, Removal of metals by biosorption: A review, Hydrometallurgy 44(1997) 301-316. [20] V. Renge, S. Khedkar, S.V. Pande, Removal of heavy metals from wastewater using low cost adsorbents: A review, Sci Revs Chem Commun 2(2012) 580-584. [21] M. Saifuddin, P. Kumaran, Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal, Electr. J. Biotechn. 8(2005) 43-53. [22] L. Zhang, Y. Zeng, Z. Cheng, Removal of heavy metal ions using chitosan and modified chitosan: A review, J. Mol. Liq. 214(2016) 175-191. [23] D.H.K. Reddy, S.M. Lee, Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions, Adv. Colloid Interface Sci. 201(2013) 68-93. [24] R. Bazargan-Lari, H.R. Zafarani, M.E. Bahrololoom, A. Nemati, Removal of Cu (II) ions from aqueous solutions by low-cost natural hydroxyapatite/chitosan composite: Equilibrium, kinetic and thermodynamic studies, J. Taiwan Inst. Chem. Eng. 45(2014) 1642-1648. [25] A. Ayoub, R.A. Venditti, J.J. Pawlak, A. Salam, M.A. Hubbe, Novel hemicellulose-chitosan biosorbent for water desalination and heavy metal removal, ACS Sustain. Chem. Eng. 1(2013) 1102-1109. [26] N. Ahmad, S. Sultana, M.Z. Khan, S. Sabir, Chitosan based nanocomposites as efficient adsorbents for water treatment, In: Modern Age Waste Water Problems, Springer, 2020, pp. 69-83. [27] R. Vidal, J. Moraes, Removal of organic pollutants from wastewater using chitosan: a literature review, Int. J. Environ. Sci. Technol. 16(2019) 1741-1754. [28] C.L. Vieira, F.O.S. Neto, V.H. Carvalho-Silva, R. Signini, Design of apolar chitosan-type adsorbent for removal of Cu (II) and Pb (II): An experimental and DFT viewpoint of the complexation process, J. Environ. Chem. Eng. 7(2019) 103070. [29] F. Heidari, M. Razavi, M.E. Bahrololoom, R. Bazargan-Lari, D. Vashaee, H. Kotturi, L. Tayebi, Mechanical properties of natural chitosan/ hydroxyapatite/magnetite nanocomposites for tissue engineering applications, Mater. Sci. Eng., C 6(2016) 338-344. [30] W. Prongmanee, I. Alam, P. Asanithi, Hydroxyapatite/graphene oxide composite for electrochemical detection of L-Tryptophan, J. Taiwan Inst. Chem. Eng. 102(2019) 415-423. [31] M. Aliabadi, M. Irani, J. Ismaeili, S. Najafzadeh, Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution, J. Taiwan Inst. Chem. Eng. 45(2014) 518-526. [32] A. Kaviani, S.M. Zebarjad, S. Javadpour, M. Ayatollahi, R Bazargan-Lari, Fabrication and characterization of low-cost freeze-gelated chitosan/collagen/hydroxyapatite hydrogel nanocomposite scaffold, Int. J. Polym. Anal. Charact. 24(2019) 191-203. [33] R. Bazargan-Lari, M. Bahrololoom, A. Nemati, Sorption behavior of Zn (II) ions by low cost and biological natural hydroxyapatite/chitosan composite from industrial waste water, J. Food Agric. Environ. 9(2011) 892-897. [34] E. Skwarek, Adsorption of Zn on synthetic hydroxyapatite from aqueous solution, Sep. Sci. Technol. 49(2014) 1654-1662. [35] E. Skwarek, W. Janusz, Adsorption of Cd (II) ions at the hydroxyapatite/electrolyte solution interface, Separ. Sci. Technol. 51(2016) 11-21. [36] W. Janusz, E. Skwarek, Study of sorption processes of strontium on the synthetic hydroxyapatite, Adsorption 22(2016) 697-706. [37] W. Janusz, E. Skwarek, Effect of Co (II) ions adsorption in the hydroxyapatite/ aqueous NaClO4 solution system on particles electrokinetics, Physicochem. Problems Min. Process. 54(2018) 31-39. [38] A.M. Soliman, H.M. Elwy, T. Thiemann, Y. Majedi, F.T. Labata, N.A.F. AlRawashdehaf, Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated palm tree leaves, J. Taiwan Inst. Chem. Eng. 58(2016) 264-273. [39] T. Guangqun, W. Yu, L. Yong, X. Dan, Removal of Pb(II) ions from aqueous solution by manganese oxide coated rice straw biochar A low-cost and highly effective sorbent, J. Taiwan Inst. Chem. Eng. 84(2018) 85-92. [40] R. Bazargan-Lari, H.R. Zafarani, M.E. Bahrololoom, A. Nemati, Removal of Cu(II) ions from aqueous solution by low-cost natural hydroxyapatite/chitosan composite: Kinetic and thermodynamic studies, J. Taiwan Inst. Chem. Eng. 45(2013) 1642-1648. [41] R. Bazargan-Lari, M.E. Bahrololoom, A. Nemati, Sorption behavior of Zn(II) ions by low cost and biological natural hydroxyapatite/chitosan composite from industrial waste water, J. Food Agric. Environ. 9(2011) 892-897. [42] F. Heidari, M. Razavi, M.E. Bahrololoom, R. Bazargan-Lari, D. Vashaee, H. Kotturi, L. Tayebi, Mechanical properties of natural chitosan/ hydroxyapatite/magnetic nanocomposites for tissue engineering applications, Mater. Sci. Eng. 65(2016) 338-344. [43] P. Ricou-Hoeffer, I. Lecuyer, P. Le Cloirec, Experimental design methodology applied to adsorption of metallic ions onto fly ash, Water Res. 35(2001) 965-976. [44] S. Teixeira, C. Delerue-Matos, L. Santos, Application of experimental design methodology to optimize antibiotics removal by walnut shell based activated carbon, Sci. Total Environ. 646(2019) 168-176. [45] M. Bahrami, M.J. Amiri, F. Bagheri, Optimization of the lead removal from aqueous solution using two starch based adsorbents: design of experiments using response surface methodology (RSM), J. Environ. Chem. Eng. 7(2019) 102793. [46] B. Rahimi, A. Ebrahimi, Photocatalytic process for total arsenic removal using an innovative BiVO4/TiO2/LED system from aqueous solution: Optimization by responsesurfacemethodology(RSM), J. Taiwan Inst. Chem. Eng.101(2019)64-79. [47] J. Shu, R. Liu, H. Wu, Z. Liu, X. Sun, C. Tao, Adsorption of methylene blue on modified electrolytic manganese residue: Kinetics, isotherm, thermodynamics and mechanism analysis, J. Taiwan Inst. Chem. Eng. 82(2018) 351-359. [48] I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc. 38(1916) 2221-2295. [49] H. Freundlich, Über die adsorption in lösungen, Z. Phys. Chem. 57(1907) 385-470. [50] C. Pearce, J. Lloyd, J. Guthrie, The removal of colour from textile wastewater using whole bacterial cells: A review, Dyes Pigm. 58(2003) 179-196. [51] M. Tempkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochim. URSS 12(1940) 327-356. [52] A. Özer, G. Akkaya, M. Turabik, Biosorption of Acid Red 274(AR 274) on Enteromorpha prolifera in a batch system, J. Hazard. Mater. 126(2005) 119-127. [53] K. Tan, B. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions, J. Taiwan Inst. Chem. Eng. 74(2017) 25-48. [54] S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens Handlingar 24(1898) 1-39. [55] Y.-S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34(1999) 451-465. [56] C. Aharoni, F. Tompkins, Kinetics of adsorption and desorption and the Elovich equation, Advances in Catalysis, 21(1970) 1-49. [57] W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, Sanit. Eng. Div. 89(1963) 31-60. |