[1] M.E. Boot-Handford, J.C. Abanades, E.J. Anthony, M.J. Blunt, S. Brandani, N. Mac Dowell, J.R. Fernandez, M.C. Ferrari, R. Gross, J.P. Hallett, R.S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R.T.J. Porter, M. Pourkashanian, G.T. Rochelle, N. Shah, J.G. Yao, P.S. Fennell, Carbon capture and storage update, Energy Environ. Sci. 7(2014) 130-189. [2] J. Gibbins, H. Chalmers, Carbon capture and storage, Energy Policy 36(2008) 4317-4322. [3] R.A. Betts, C.D. Jones, J.R. Knight, R.F. Keeling, J.J. Kennedy, El Nino and a record CO2 rise, Nat. Clim. Chang. 6(2016) 806-810. [4] International Enenrgy Agency, Global Energy & CO2 Status Report 2019, 2019, https://www.iea.org/reports/global-energy-co2-status-report-2019. [5] J. Sun, Y. Sun, Y. Yang, X. Tong, W. Liu, Plastic/rubber waste-templated carbide slag pellets for regenerable CO2 capture at elevated temperature, Appl. Energy 242(2019) 919-930. [6] H. Li, M. Qu, Y. Hu, High-temperature CO2 capture by Li4SiO4 adsorbents:Effects of pyroligneous acid (PA) modification and existence of CO2 at desorption stage, Fuel Process. Technol. 197(2020) 106186. [7] Y. Yang, W. Liu, Y. Hu, J. Sun, X. Tong, Q. Chen, Q. Li, One-step synthesis of porous Li4SiO4-based adsorbent pellets via graphite moulding method for cyclic CO2 capture, Chem. Eng. J. 353(2018) 92-99. [8] X. Tong, W. Liu, Y. Yang, J. Sun, Y. Hu, H. Chen, Q. Li, A semi-industrial preparation procedure of CaO-based pellets with high CO2 uptake performance, Fuel Process. Technol. 193(2019) 149-158. [9] W. Zhang, Y.J. Li, L.B. Duan, X.T. Ma, Z.Y. Wang, C.M. Lu, Attrition behavior of calcium-based waste during CO2 capture cycles using calcium looping in a fluidized bed reactor, Chem. Eng. Res. Des. 109(2016) 806-815. [10] J. Chen, L. Duan, Z. Sun, Review on the development of sorbents for calcium looping, Energy Fuels 34(2020) 7806-7836. [11] J. Chen, L. Duan, T. Shi, R. Bian, Y. Lu, F. Donat, E.J. Anthony, A facile one-pot synthesis of CaO/CuO hollow microspheres featuring highly porous shells for enhanced CO2 capture in a combined Ca-Cu looping process via a templatefree synthesis approach, J. Mater. Chem. A. 7(2019) 21096-21105. [12] Y. Xu, B. Lu, C. Luo, J. Chen, Z. Zhang, L. Zhang, Sorption enhanced steam reforming of ethanol over Ni-based catalyst coupling with high-performance CaO pellets, Chem. Eng. J. 406(2021) 126903. [13] L. An, S. Liu, L. Wang, J. Wu, Z. Wu, C. Ma, Q. Yu, X. Hu, Novel nitrogen-doped porous carbons derived from graphene for effective CO2 capture, Ind. Eng. Chem. Res. 58(2019) 3349-3358. [14] S. Liu, R. Ma, X. Hu, L. Wang, X. Wang, M. Radosz, M. Fan, CO2 adsorption on hazelnut-shell-derived nitrogen-doped porous carbons synthesized by singlestep sodium amide activation, Ind. Eng. Chem. Res. 59(2020) 7046-7053. [15] S. Liu, L. Rao, P. Yang, X. Wang, L. Wang, R. Ma, L. Yue, X. Hu, Superior CO2 uptake on nitrogen doped carbonaceous adsorbents from commercial phenolic resin, J. Environ. Sci. 93(2020) 109-116. [16] N. Chanut, S. Bourrelly, B. Kuchta, C. Serre, J.-S. Chang, P.A. Wright, P.L. Llewellyn, Screening the effect of water vapour on gas adsorption performance:application to CO2 capture from flue gas in metal-organic frameworks, ChemSusChem 10(2017) 1543-1553. [17] S. Mane, Z.-Y. Gao, Y.-X. Li, D.-M. Xue, X.-Q. Liu, L.-B. Sun, Fabrication of microporous polymers for selective CO2 capture:The significant role of crosslinking and crosslinker length, J. Mater. Chem. A. 5(2017) 23310-23318. [18] W. Liu, H. An, C. Qin, J. Yin, G. Wang, B. Feng, M. Xu, Performance enhancement of calcium oxide sorbents for cyclic CO2 capture-A review, Energy Fuels 26(2012) 2751-2767. [19] H. Gupta, L.S. Fan, Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas, Ind. Eng. Chem. Res. 41(2002) 4035-4042. [20] D. Alvarez, J.C. Abanades, Determination of the critical product layer thickness in the reaction of CaO with CO2, Ind. Eng. Chem. Res. 44(2005) 5608-5615. [21] T. Shimizu, T. Hirama, H. Hosoda, K. Kitano, M. Inagaki, K. Tejima, A twin fluidbed reactor for removal of CO2 from combustion processes, Chem. Eng. Res. Des. 77(1999) 62-68. [22] D. Mess, A.F. Sarofim, J.P. Longwell, Product layer diffusion during the reaction of calcium oxide with carbon dioxide, Energy Fuels 13(1999) 999-1005. [23] G.S. Grasa, J.C. Abanades, CO2 capture capacity of CaO in long series of carbonation/calcination cycles, Ind. Eng. Chem. Res. 45(2006) 8846-8851. [24] J.C. Abanades, D. Alvarez, Conversion limits in the reaction of CO2 with lime, Energy Fuels 17(2003) 308-315. [25] D.-F. Zhang, L.-L. Gu, Y.-H. Huang, Cyclic CO2 capture performance of CaObased sorbents obtained from various precursors, Int. J. Glob. Warm. 7(2015) 226-241. [26] W. Liu, N.W.L. Low, B. Feng, G. Wang, J.C. Diniz da Costa, Calcium precursors for the production of CaO sorhents for multicycle CO2 capture, Environ. Sci. Technol. 44(2010) 841-847. [27] J. Chen, L. Duan, Z. Sun, Accurate control of cage-like CaO hollow microspheres for enhanced CO2 capture in calcium looping via a template-assisted synthesis approach, Environ. Sci. Technol. 53(2019) 2249-2259. [28] C. Luo, Y. Zheng, N. Ding, Q. Wu, G. Bian, C. Zheng, Development and performance of CaO/La2O3 sorbents during calcium looping cycles for CO2 capture, Ind. Eng. Chem. Res. 49(2010) 11778-11784. [29] N. Wang, Y. Feng, L. Liu, X. Guo, Effects of preparation methods on the structure and property of Al-stabilized CaO-based sorbents for CO2 capture, Fuel Process. Technol. 173(2018) 276-284. [30] E.T. Santos, C. Alfonsin, A.J.S. Chambel, A. Fernandes, A.P.S. Dias, C.I.C. Pinheiro, M.F. Ribeiro, Investigation of a stable synthetic sol-gel CaO sorbent for CO2 capture, Fuel 94(2012) 624-628. [31] C. Luo, Y. Zheng, C. Zheng, J. Yin, C. Qin, B. Feng, Manufacture of calcium-based sorbents for high temperature cyclic CO2 capture via a sol-gel process, Int. J. Greenh. Gas Control 12(2013) 193-199. [32] B. Wang, X. Song, Z. Wang, C. Zheng, Preparation and application of the sol-gel combustion synthesis-made CaO/CaZrO3 sorbent for cyclic CO2 capture through the severe calcination condition, Chinese J. Chem. Eng. 22(2014) 991-999. [33] X. Ma, Y. Li, X. Yan, W. Zhang, J. Zhao, Z. Wang, Preparation of a morph-genetic CaO-based sorbent using paper fibre as a biotemplate for enhanced CO2 capture, Chem. Eng. J. 361(2019) 235-244. [34] V. Manovic, E.J. Anthony, Thermal activation of CaO-based sorbent and selfreactivation during CO2 capture looping cycles, Environ. Sci. Technol. 42(2008) 4170-4174. [35] V. Manovic, E.J. Anthony, G. Grasa, J.C. Abanades, CO2 looping cycle performance of a high-purity limestone after thermal activation/doping, Energy Fuels 22(2008) 3258-3264. [36] D. He, Z. Ou, C. Qin, T. Deng, J. Yin, G. Pu, Understanding the catalytic acceleration effect of steam on CaCO3 decomposition by density function theory, Chem. Eng. J. 379(2020) 122348. [37] Y. Wang, S. Lin, Y. Suzuki, Experimental study on CO2 capture conditions of a fluidized bed limestone decomposition reactor, Fuel Process. Technol. 91(2010) 958-963. [38] V. Manovic, E.J. Anthony, Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles, Environ. Sci. Technol. 41(2007) 1420-1425. [39] H. Lu, A. Khan, S.E. Pratsinis, P.G. Smirniotis, Flame-made durable doped-CaO nanosorbents for CO2 capture, Energy Fuels 23(2009) 1093-1100. [40] Q. Zhu, S. Zeng, Y. Yu, A model to stabilize CO2 uptake capacity during carbonation-calcination cycles and its case of CaO-MgO, Environ. Sci. Technol. 51(2017) 552-559. [41] C.Y. Chi, Y.J. Li, W. Zhang, Z.Y. Wang, Synthesis of a hollow microtubular Ca/Al sorbent with high CO(2) up take by hard templating, Appl. Energy 251(2019) 113382. [42] X. Liu, J. Shi, L. He, X. Ma, S. Xu, Modification of CaO-based sorbents prepared from calcium acetate for CO2 capture at high temperature, Chinese J. Chem. Eng. 25(2017) 572-580. [43] L. Shan, H. Li, B. Meng, Y. Yu, Y. Min, Improvement of CO2 capture performance of calcium-based absorbent modified with palygorskite, Chinese J. Chem. Eng. 24(2016) 1283-1289. [44] Y. Xu, H. Ding, C. Luo, Q. Zheng, Y. Zheng, X. Li, Y. Hu, L. Zhang, NaBr-enhanced CaO-based sorbents with a macropore-stabilized microstructure for CO2 capture, Energy Fuels 32(2018) 8571-8578. [45] Y. Xu, H. Ding, C. Luo, Y. Zheng, Q. Zhang, X. Li, J. Sun, L. Zhang, Potential synergy of chlorine and potassium and sodium elements in carbonation enhancement of CaO-based sorbents, ACS Sustain. Chem. Eng. 6(2018) 11677-11684. [46] Y. Xu, C. Luo, Y. Zheng, H. Ding, L. Zhang, Macropore-stabilized limestone sorbents prepared by the simultaneous hydration-impregnation method for high-temperature CO2 capture, Energy Fuels 30(2016) 3219-3226. [47] Y. Xu, H. Ding, C. Luo, Y. Zheng, Y. Xu, X. Li, Z. Zhang, C. Shen, L. Zhang, Effect of lignin, cellulose and hemicellulose on calcium looping behavior of CaO-based sorbents derived from extrusion-spherization method, Chem. Eng. J. 334(2018) 2520-2529. [48] H. Chen, C. Zhao, M. Chen, Y. Li, X. Chen, CO2 uptake of modified calcium-based sorbents in a pressurized carbonation-calcination looping, Fuel Process. Technol. 92(2011) 1144-1151. [49] A. Akgsornpeak, T. Witoon, T. Mungcharoen, J. Limtrakul, Development of synthetic CaO sorbents via CTAB-assisted sol-gel method for CO2 capture at high temperature, Chem. Eng. J. 237(2014) 189-198. [50] Y.J. Li, C.S. Zhao, H.C. Chen, Q.Q. Ren, L.B. Duan, CO2 capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle, Energy 36(2011) 1590-1598. [51] H. Lu, E.P. Reddy, P.G. Smirniotis, Calcium oxide based sorbents for capture of carbon dioxide at high temperatures, Ind. Eng. Chem. Res. 45(2006) 3944-3949. [52] Y. Li, C. Zhao, H. Chen, C. Liang, L. Duan, W. Zhou, Modified CaO-based sorbent looping cycle for CO2 mitigation, Fuel 88(2009) 697-704. [53] C. Luo, Y. Zheng, Y. Xu, N. Ding, Q. Shen, C. Zheng, Wet mixing combustion synthesis of CaO-based sorbents for high temperature cyclic CO2 capture, Chem. Eng. J. 267(2015) 111-116. [54] P. Lan, S. Wu, Mechanism for self-reactivation of nano-CaO-based CO2 sorbent in calcium looping, Fuel 143(2015) 9-15. |