[1] A. Marican, E.F. Durán-Lara, A review on pesticide removal through different processes, Environ Sci Pollut Res Int 25 (3) (2018) 2051–2064 [2] J. Venkateswara Rao, Sublethal effects of an organophosphorus insecticide (RPR-II) on biochemical parameters of tilapia, Oreochromis mossambicus, Comp Biochem Physiol C Toxicol Pharmacol 143 (4) (2006) 492–498 [3] M.A. Chowdhury, S. Banik, B. Uddin, M. Moniruzzaman, N. Karim, S.H. Gan, Organophosphorus and carbamate pesticide residues detected in water samples collected from paddy and vegetable fields of the Savar and Dhamrai Upazilas in Bangladesh, Int J Environ Res Public Health 9 (9) (2012) 3318–3329 [4] M. Armaghan, M.M. Amini, Adsorption of diazinon and fenitrothion on nanocrystalline magnesium oxides, Arab. J. Chem. 10 (1) (2017) 91–99 [5] M. Stoytcheva, R. Zlatev, Organophosphorus pesticides analysis. Pesticides in the Modern World—Trends in Pesticides Analysis. Intechweborg, Croatia, 2011. (in Croatia). [6] Konstantinou IK, Sakellarides TM, Sakkas VA, Albanis TA, Photocatalytic degradation of selected s-triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions, Environ Sci Technol 35 (2) (2001) 398–405 [7] Y. Samet, L. Agengui, R. Abdelhédi, Electrochemical degradation of chlorpyrifos pesticide in aqueous solutions by anodic oxidation at boron-doped diamond electrodes, Chem. Eng. J. 161 (1–2) (2010) 167–172 [8] S.Y. Deng, Y. Chen, D.S. Wang, T.Z. Shi, X.W. Wu, X. Ma, X.Q. Li, R.M. Hua, X.Y. Tang, Q.X. Li, Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1, J Hazard Mater 297 (2015) 17–24 [9] Y.M. Zhang, K. Pagilla, Treatment of malathion pesticide wastewater with nanofiltration and photo-Fenton oxidation, Desalination 263 (1–3) (2010) 36–44 [10] L.F. Alfonso, G.V. Germán, P.C. María Del Carmen, G. Hossein, Adsorption of organophosphorus pesticides in tropical soils: The case of Karst landscape of northwestern Yucatan, Chemosphere 166 (2017) 292–299 [11] Behnam R, Morshed M, Tavanai H, Ghiaci M, Destructive adsorption of Diazinon pesticide by activated carbon nanofibers containing Al2O3 and MgO nanoparticles, Bull Environ Contam Toxicol 91 (4) (2013) 475–480 [12] T. Taghizade Firozjaee, N. Mehrdadi, M. Baghdadi, G.R. Nabi Bidhendi, The removal of diazinon from aqueous solution by chitosan/carbon nanotube adsorbent, Desalin Water Treat. 79 (2017) 291–300 [13] Meng Q, Doetschman DC, Rizos AK, Lee MH, Schulte JT, Spyros A, Kanyi CW, Adsorption of organophosphates into microporous and mesoporous NaX zeolites and subsequent chemistry, Environ Sci Technol 45 (7) (2011) 3000–3005 [14] V.W.O. Wanjeri, C.J. Sheppard, A.R.E. Prinsloo, J.C. Ngila, P.G. Ndungu, Isotherm and kinetic investigations on the adsorption of organophosphorus pesticides on graphene oxide based silica coated magnetic nanoparticles functionalized with 2-phenylethylamine, J. Environ. Chem. Eng. 6 (1) (2018) 1333–1346 [15] Boulanouar S, Mezzache S, Combès A, Pichon V, Molecularly imprinted polymers for the determination of organophosphorus pesticides in complex samples, Talanta 176 (2018) 465–478 [16] M. Armaghan, M.M. Amini, Adsorption of diazinon and fenitothion on MCM-41 and MCM-48 mesoporous silicas from non-polar solvent, Colloid J. 71 (5) (2009) 583–588 [17] S. Li, Y. Chen, X. Pei, S. Zhang, X. feng, J. Zhou, B. Wang, Water purification: Adsorption over metal-organic frameworks. Chinese Journal of Chemistry (2016) 34(2)175–185 [18] X. Fang, B.Y. Zong, S. Mao, Metal-organic framework-based sensors for environmental contaminant sensing, Nanomicro Lett 10 (4) (2018) 64 [19] Zhu X, Li B, Yang J, Li Y, Zhao W, Shi J, Gu J, Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67, ACS Appl Mater Interfaces 7 (1) (2014) 223–231 [20] H.L. Nguyen, T.T. Vu, D.K. Nguyen, C.A. Trickett, T.L.H. Doan, C.S. Diercks, V.Q. Nguyen, K.E. Cordova, A complex metal-organic framework catalyst for microwave-assisted radical polymerization, Commun. Chem. 1 (2018) 70 [21] H. Li, K.C. Wang, Y.J. Sun, C.T. Lollar, J.L. Li, H.C. Zhou, Recent advances in gas storage and separation using metal-organic frameworks, Mater. Today 21 (2) (2018) 108–121 [22] Cai W, Wang J, Chu C, Chen W, Wu C, Liu G, Metal-organic framework-based stimuli-responsive systems for drug delivery, Adv Sci (Weinh) 6 (1) (2019) 1801526 [23] N.C. Burtch, H. Jasuja, K.S. Walton, Water stability and adsorption in metal-organic frameworks, Chem. Rev. 114 (20) (2014) 10575–10612 [24] X.D. Zhao, K.K. Wang, Z.Q. Gao, H.H. Gao, Z.X. Xie, X.Y. Du, H.L. Huang, Reversing the dye adsorption and separation performance of metal-organic frameworks via introduction of -SO3H groups, Ind. Eng. Chem. Res. 56 (15) (2017) 4496–4501 [25] X.D. Zhao, Y.W. Zhao, M.Q. Zheng, S.X. Liu, W.J. Xue, G.H. Du, T. Wang, X.L. Gao, K.K. Wang, J.S. Hu, Z.Q. Gao, H.L. Huang, Efficient separation of vitamins mixture in aqueous solution using a stable zirconium-based metal-organic framework, J Colloid Interface Sci 555 (2019) 714–721 [26] A. Saboori, A nanoparticle sorbent composed of MIL-101(Fe) and dithiocarbamate-modified magnetite nanoparticles for speciation of Cr(III) and Cr(VI) prior to their determination by electrothermal AAS, Microchimica Acta 184 (5) (2017) 1509–1516 [27] A. Hamedi, M.B. Zarandi, M.R. Nateghi, Highly efficient removal of dye pollutants by MIL-101(Fe) metal-organic framework loaded magnetic particles mediated by Poly L-Dopa, J. Environ. Chem. Eng. 7 (1) (2019) 102882 [28] H.T. Minh Thanh, T.T. Thu Phuong, P.T. le Hang, T.T. Tam Toan, T.N. Tuyen, T.X. Mau, D.Q. Khieu, Comparative study of Pb(II) adsorption onto MIL-101 and Fe-MIL-101 from aqueous solutions, J. Environ. Chem. Eng. 6 (4) (2018) 4093–4102 [29] B. Han, E.Y. Zhang, G. Cheng, Facile preparation of graphene oxide-MIL-101(Fe) composite for the efficient capture of uranium, Appl. Sci. 8 (11) (2018) 2270 [30] M.J. Lu, L. Li, S.Q. Shen, D. Chen, W. Han, Highly efficient removal of Pb2+ by a sandwich structure of metal–organic framework/GO composite with enhanced stability, New J. Chem. 43 (2) (2019) 1032–1037 [31] X.Y. Guo, C.F. Kang, H.L. Huang, Y.J. Chang, C.L. Zhong, Exploration of functional MOFs for efficient removal of fluoroquinolone antibiotics from water, Microporous Mesoporous Mater. 286 (2019) 84–91 [32] A.M. Gutierrez, T.D. Dziubla, J.Z. Hilt, Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment, Rev. Environ. Heal. 32 (1–2) (2017) 111–117 [33] X.L. Zhang, H.Y. Niu, Y.Y. Pan, Y.L. Shi, Y.Q. Cai, Chitosan-coated octadecyl-functionalized magnetite nanoparticles: Preparation and application in extraction of trace pollutants from environmental water samples, Anal Chem 82 (6) (2010) 2363–2371 [34] K. Shrivas, A. Ghosale, N. Nirmalkar, A. Srivastava, S.K. Singh, S.S. Shinde, Removal of endrin and dieldrin isomeric pesticides through stereoselective adsorption behavior on the graphene oxide-magnetic nanoparticles, Environ Sci Pollut Res Int 24 (32) (2017) 24980–24988 [35] Q.F. Yang, J. Wang, X.Y. Chen, W.X. Yang, H.N. Pei, N. Hu, Z.H. Li, Y.R. Suo, T. Li, J.L. Wang, The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent, J. Mater. Chem. A 6 (5) (2018) 2184–2192 [36] T. Wang, P. Zhao, N. Lu, H.C. Chen, C.L. Zhang, X.H. Hou, Facile fabrication of Fe3O4/MIL-101(Cr) for effective removal of acid red 1 and orange G from aqueous solution, Chem. Eng. J. 295 (2016) 403–413 [37] Q.X. Yang, Q.Q. Zhao, S.S. Ren, Z.J. Chen, H.G. Zheng, Assembly of Zr-MOF crystals onto magnetic beads as a highly adsorbent for recycling nitrophenol, Chem. Eng. J. 323 (2017) 74–83 [38] Zheng X, Wang J, Xue X, Liu W, Kong Y, Cheng R, Yuan D, Facile synthesis of Fe3O4@MOF-100(Fe) magnetic microspheres for the adsorption of diclofenac sodium in aqueous solution, Environ Sci Pollut Res Int 25 (31) (2018) 31705–31717 [39] G.G. Wu, J.P. Ma, S. Li, J. Guan, B. Jiang, L.Y. Wang, J.H. Li, X.Y. Wang, L.X. Chen, Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions, J. Colloid Interface Sci. 528 (2018) 360–371 [40] H. Javadian, M. Ghasemi, M. Ruiz, A.M. Sastre, S.M.H. Asl, M. Masomi, Fuzzy logic modeling of Pb (II) sorption onto mesoporous NiO/ZnCl2-Rosa Canina-L seeds activated carbon nanocomposite prepared by ultrasound-assisted co-precipitation technique, Ultrason. Sonochemistry 40 (2018) 748–762 [41] Y.S. Al-Degs, R. Abu-El-halawa, S.S. Abu-Alrub, Analyzing adsorption data of erythrosine dye using principal component analysis, Chem. Eng. J. 191 (2012) 185–194 [42] A.M. Ghaedi, M.M. Baneshi, A. Vafaei, A.R.S. Nejad, I. Tyagi, N. Kumar, E. Galunin, A.G. Tkachev, S. Agarwal, V.K. Gupta, Comparison of multiple linear regression and group method of data handling models for predicting sunset yellow dye removal onto activated carbon from oak tree wood, Environ. Technol. Innov. 11 (2018) 262–275 [43] M. Ghaedi, A.M. Ghaedi, M. Hossainpour, A. Ansari, M.H. Habibi, A.R. Asghari, Least square-support vector (LS-SVM) method for modeling of methylene blue dye adsorption using copper oxide loaded on activated carbon: Kinetic and isotherm study, J. Ind. Eng. Chem. 20 (4) (2014) 1641–1649 [44] M. Ghaedi, A.M. Ghaedi, E. Negintaji, A. Ansari, A. Vafaei, M. Rajabi, Random forest model for removal of bromophenol blue using activated carbon obtained from Astragalus bisulcatus tree, J. Ind. Eng. Chem. 20 (4) (2014) 1793–1803 [45] Chowdhury S, Saha PD, Artificial neural network (ANN) modeling of adsorption of methylene blue by NaOH-modified rice husk in a fixed-bed column system, Environ Sci Pollut Res Int 20 (2) (2013) 1050–1058 [46] Maksimchuk NV, Kovalenko KA, Fedin VP, Kholdeeva OA, Cyclohexane selective oxidation over metal-organic frameworks of MIL-101 family: Superior catalytic activity and selectivity, Chem Commun (Camb) 48 (54) (2012) 6812–6814 [47] P.L. Hariani, M. Faizal, R. Ridwan, M. Marsi, D. Setiabudidaya, Synthesis and properties of Fe3O4 nanoparticles by Co-precipitation method to removal procion dye, Int. J. Environ. Sci. Dev. (2013) 336–340 [48] A. Altunkaynak, M. Özger, M. Çakmakcı, Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn, Ecol. Model. 189 (3–4) (2005) 436–446 [49] B. Rahmanian, M. Pakizeh, M. Esfandyari, F. Heshmatnezhad, A. Maskooki, Fuzzy modeling and simulation for lead removal using micellar-enhanced ultrafiltration (MEUF), J. Hazard. Mater. 192 (2) (2011) 585–592 [50] M. Rajabi, B. Bohloli, E. Gholampour Ahangar, Intelligent approaches for prediction of compressional, shear and Stoneley wave velocities from conventional well log data: A case study from the Sarvak carbonate reservoir in the Abadan Plain (Southwestern Iran), Comput. Geosci. 36 (5) (2010) 647–664 [51] A. Barua, L.S. Mudunuri, O. Kosheleva, Why trapezoidal and triangular membership functions work so well: Towards a theoretical explanation, J. Uncertain Syst. 8 (3) (2014) 164–168 [52] F.I. Turkdogan-Aydınol, K. Yetilmezsoy, A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater, J. Hazard. Mater. 182 (1–3) (2010) 460–471 [53] N. Sumarti, N. Wahyudi, Stock and option portfolio using fuzzy logic approachBandung, Indonesia. AIP Publishing LLC, 2014. doi: 10.1063/1.4868854 [54] S.M. Hosseini Asl, M. Masomi, M. Hosseini, H. Javadian, M. Ruiz, A.M. Sastre, Synthesis of hydrous iron oxide/aluminum hydroxide composite loaded on coal fly ash as an effective mesoporous and low-cost sorbent for Cr(VI) sorption: Fuzzy logic modeling, Process. Saf. Environ. Prot. 107 (2017) 153–167 [55] S.L. Zhang, Z. Jiao, W.X. Yao, A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples, J. Chromatogr. A 1371 (2014) 74–81 [56] S.L. Zhang, Z. Du, G.K. Li, Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples, Talanta 115 (2013) 32–39 [57] C. Petit, T.J. Bandosz, Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites: Analysis of surface interactions, Adv. Funct. Mater. 20 (1) (2010) 111–118 [58] X.X. Yue, W.L. Guo, X.H. Li, H.H. Zhou, R.Q. Wang, Core-shell Fe3O4@MIL-101(Fe) composites as heterogeneous catalysts of persulfate activation for the removal of Acid Orange 7, Environ Sci Pollut Res Int 23 (15) (2016) 15218–15226 [59] Z.W. Jiang, Y.F. Li, Facile synthesis of magnetic hybrid Fe3O4/MIL-101 via heterogeneous coprecipitation assembly for efficient adsorption of anionic dyes, J. Taiwan Inst. Chem. Eng. 59 (2016) 373–379 [60] O.A. Aly, M.I. Badawy, Hydrolysis of organophosphate insecticides in aqueous media, Environ. Int. 7 (6) (1982) 373–377 [61] H. Javadian, S. Asadollahpour, M. Ruiz, A.M. Sastre, M. Ghasemi, S.M.H. Asl, M. Masomi, Using fuzzy inference system to predict Pb (II) removal from aqueous solutions by magnetic Fe3O4/H2SO4-activated Myrtus Communis leaves carbon nanocomposite, J. Taiwan Inst. Chem. Eng. 91 (2018) 186–199 [62] K. Yetilmezsoy, Fuzzy-logic modeling of Fenton's oxidation of anaerobically pretreated poultry manure wastewater, Environ Sci Pollut Res Int 19 (6) (2012) 2227–2237 [63] A. Nasrollahpour, S.E. Moradi, Hexavalent chromium removal from water by ionic liquid modified metal-organic frameworks adsorbent, Microporous Mesoporous Mater. 243 (2017) 47–55 [64] W.F. Liu, J. Zhang, C.L. Zhang, L. Ren, Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina: Mechanisms, isotherms and kinetics, Chem. Eng. J. 171 (2) (2011) 431–438 [65] G. Moussavi, H. Hosseini, A. Alahabadi, The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon, Chem. Eng. J. 214 (2013) 172–179 [66] M. Ghaedi, A. Ansari, F. Bahari, A.M. Ghaedi, A. Vafaei, A hybrid artificial neural network and particle swarm optimization for prediction of removal of hazardous dye brilliant green from aqueous solution using zinc sulfide nanoparticle loaded on activated carbon, Spectrochim Acta A Mol Biomol Spectrosc 137 (2015) 1004–1015 [67] N. Dehghanian, M. Ghaedi, A. Ansari, A. Ghaedi, A. Vafaei, M. Asif, S. Agarwal, I. Tyagi, V.K. Gupta, A random forest approach for predicting the removal of Congo red from aqueous solutions by adsorption onto tin sulfide nanoparticles loaded on activated carbon, Desalination Water Treat. 57 (20) (2016) 9272–9285 [68] N.M. Mahmoodi, H. Chamani, H.R. Kariminia, Functionalized copper oxide-zinc oxide nanocomposite: Synthesis and genetic programming model of dye adsorption, Desalination Water Treat. 57 (40) (2016) 18755–18769 [69] M. Ghaedi, R. Hosaininia, A.M. Ghaedi, A. Vafaei, F. Taghizadeh, Adaptive neuro-fuzzy inference system model for adsorption of 1, 3, 4-thiadiazole-2, 5-dithiol onto gold nanoparticales-activated carbon, Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 131 (2014) 606–614 [70] M. Ghaedi, E. Shojaeipour, A.M. Ghaedi, R. Sahraei, Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: Artificial neural network modeling and genetic algorithm optimization, Spectrochim Acta A Mol Biomol Spectrosc 142 (2015) 135–149 [71] Z. Noorimotlagh, S. Shahriyar, R. Darvishi Cheshmeh Soltani, R. Tajik, Optimized adsorption of 4-chlorophenol onto activated carbon derived from milk vetch utilizing response surface methodology, Desalination Water Treat. 57 (30) (2016) 14213–14226 [72] D. Kovacević, J. Lemić, M. Damjanović, R. Petronijević, Đ. Janaćković, T. Stanić, Fenitrothion adsorption - desorption on organo - minerals, Appl. Clay Sci. 52 (1–2) (2011) 109–114 [73] G.M. Lule, M.U. Atalay, Comparison of fenitrothion and trifluralin adsorption on organo-zeolites and activated carbon. part I: Pesticides adsorption isotherms on adsorbents, Part. Sci. Technol. 32 (4) (2014) 418–425 |