[1] Y. Liu, Y. Wang, Y. Nie, C. Wang, X. Ji, L. Zhou, F. Pan, S. Zhang, Preparation of MWCNTs-graphene-cellulose fiber with ionic liquids, ACS Sustainable Chem. Eng. 7 (2019) 20013-20021. [2] F. Li, Y. Bai, S. Zeng, X. Liang, H. Wang, F. Huo, X. Zhang, Protic ionic liquids with low viscosity for efficient and reversible capture of carbon dioxide, Int. J. Greenh. Gas Control. 90 (2019), 102801-102801. [3] J. Li, Z. Dai, M. Usman, Z. Qi, L. Deng, CO2/H2 separation by amino-acid ionic liquids with polyethylene glycol as co-solvent, Int. J. Greenh. Gas Control. 45 (2016) 207-215. [4] J. Feng, H. Gao, L. Zheng, Z. Chen, S. Zeng, C. Jiang, H. Dong, L. Liu, S. Zhang, X. Zhang, A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction, Nat. Commun. 11 (2020), 4341-4341. [5] Y. Liu, K. Thomsen, Y. Nie, S. Zhang, A. Meyer, Predictive screening of ionic liquids for dissolving cellulose and experimental verification, Green Chem. 18 (2016) 6246-6254. [6] X. Liu, Y. Ren, L. Zhang, S. Zhang, Functional ionic liquid modified core-shell structured fibrous gel polymer electrolyte for safe and efficient fast charging lithium-ion batteries, Front. Chem. 7 (2019) 421. [7] I. Sujatha, G. Venkatarathnam, Performance of a vapour absorption heat transformer operating with ionic liquids and ammonia, Energy 141 (2017) 924-936. [8] Y. Zhao, Y. Huang, X. Zhang, S. Zhang, Prediction of heat capacity of ionic liquids based on COSMO-RS Sr-profile, Comput. Aided Chem. Eng. 37 (2015) 251-256. [9] Y. Xie, Y. Zhang, X. Lu, X. Ji, Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids, Appl. Energy 136 (2014) 325-335. [10] K. Müller, J. Albert, Contribution of the individual ions to the heat capacity of ionic liquids, Ind. Eng. Chem. Res. 53 (2014) 10343-10346. [11] K.G. Joback, A unified approach to physical property estimation using multivariant statistical techniques, M.S. Thesis, Massachusetts Institute of Technology Cambridge, America,1984. [12] R. Ge, C. Hardacre, J. Jacquemin, P. Nancarrow, D.W. Rooney, Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. Measurement and prediction, J. Chem. Eng. Data 53 (2008) 2148-2153. [13] J. Jacquemin, J. Feder-Kubis, M. Zorębski, K. Grzybowska, M. ChorąSewski, S. Hensel-Bielówka, E. Zorębski, M. Paluch, M. Dzida, Structure and thermal properties of salicylate-based-protic ionic liquids as new heat storage media. COSMO-RS structure characterization and modeling of heat capacities, Phys. Chem. Chem. Phys. 16 (2014) 3549-3557. [14] M. Sattari, F. Gharagheizi, P. Ilani-Kashkouli, A.H. Mohammadi, D. Ramjugernath, Development of a group contribution method for the estimation of heat capacities of ionic liquids, J. Therm. Anal. Calorim. 115 (2013) 1863-1882. [15] A.N. Soriano, A.M. Agapito, L.J.L.I. Lagumbay, A.R. Caparanga, M.H. Li, A simple approach to predict molar heat capacity of ionic liquids using group-additivity method, J. Taiwan Inst. Chem. E 41 (2010) 307-314. [16] X. Kang, X. Liu, J. Li, Y. Zhao, H. Zhang, Heat capacity prediction of ionic liquids based on quantum chemistry descriptors, Ind. Eng. Chem. Res. 57 (2018) 16989-16994. [17] A. Barati-Harooni, A. Najafi-Marghmaleki, M. Arabloo, A.H. Mohammadi, Chemical structural models for prediction of heat capacities of ionic liquids, J. Mol. Liq. 232 (2017) 113-122. [18] Y. Zhao, R. Gani, R.M. Afzal, X. Zhang, S. Zhang, Ionic liquids for absorption and separation of gases: an extensive database and a systematic screening method, AIChE J. 63 (2017) 1353-1367. [19] X. Liu, Y. Nie, Y. Liu, S. Zhang, A.L. Skov, Screening of ionic liquids for keratin dissolution by means of COSMO-RS and experimental verification, ACS Sustainable Chem. Eng. 6 (2018) 17314-17322. [20] J. Han, C. Dai, G. Yu, Z. Lei, Parameterization of COSMO-RS model for ionic liquids, Green Energy Environ. 3 (2018) 247-265. [21] X. Liu, T. Zhou, X. Zhang, S. Zhang, X. Liang, R. Gani, G.M. Kontogeorgis, Application of COSMO-RS and UNIFAC for ionic liquids based gas separation, Chem. Eng. Sci. 192 (2018) 816-828. [22] X. Zhang, Z. Liu, W. Wang, Screening of ionic liquids to capture CO2 by COSMORS and experiments, AIChE J. 54 (2008) 2717-2728. [23] Z.K. Koi, W.Z.N. Yahya, R.A.A. Talip, K.A. Kurnia, Prediction of the viscosity of imidazolium-based ionic liquids at different temperatures using the quantitative structure property relationship approach, New J. Chem. 43 (2019) 16207-16217. [24] J. Palomar, V.R. Ferro, J.S. Torrecilla, F. Rodríguez, Density and molar volume predictions using COSMO-RS for ionic liquids. An approach to solvent design, Ind. Eng. Chem. Res. 46 (2007) 6041-6048.. [25] Y. Liu, H. Yu, Y. Sun, S. Zeng, X. Zhang, Y. Nie, S. Zhang, X. Ji, Screening deep eutectic solvents for CO2 capture with COSMO-RS, Front. Chem. 8 (2020), 82-82. [26] I. Bandres, B. Giner, H. Artigas, F.M. Royo, C. Lafuente, Thermophysic comparative study of two isomeric pyridinium-based ionic liquids, J. Phys. Chem. B 112 (2008) 3077-3084. [27] C.M. Tenney, M. Massel, J.M. Mayes, M. Sen, J.F. Brennecke, E.J. Maginn, A computational and experimental study of the heat transfer properties of nine different ionic liquids, J. Chem. Eng. Data 59 (2014) 391-399. [28] A. Diedrichs, J. Gmehling, Measurement of heat capacities of ionic liquids by differential scanning calorimetry, Fluid Phase Equilibria 244 (2006) 68-77. [29] M. Kermanioryani, M.I.A. Mutalib, Y. Dong, K.C. Lethesh, O.B.O. Ben Ghanem, K. A. Kurnia, N.F. Aminuddin, J.-M. Leveque, Physicochemical properties of new imidazolium-based ionic liquids containing aromatic group, J. Chem. Eng. Data 61 (2016) 2020-2026. [30] P.B.P. Serra, Thermal behavior and heat capacity of ionic liquids: Benzilimidazolium and alkylimidazolium derivatives, M.S. Thesis, Universidade do Porto, Portugal, 2013. [31] J. Rotrekl, J. Storch, J. Kloužek, P. Vrbka, P. Husson, A. Andresová, M. Bendová, Z. Wagner, Thermal properties of 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide ionic liquids with linear, branched and cyclic alkyl substituents, Fluid Phase Equilibria 443 (2017) 32-43. [32] Y.A. Sanmamed, P. Navia, D. Gonzalez-Salgado, J. Troncoso, L. Romani, Pressure and temperature dependence of isobaric heat capacity for [Emim][BF4], [Bmim][BF4], [Hmim][BF4], and [Omim][BF4], J. Chem. Eng. Data 55 (2010) 600-604. [33] A.A. Strechan, Y.U. Paulechka, A.V. Blokhin, G.J. Kabo, Low-temperature heat capacity of hydrophilic ionic liquids [BMIM][CF3COO] and [BMIM][CH3COO] and a correlation scheme for estimation of heat capacity of ionic liquids, J. Chem. Thermodyn. 40 (2008) 632-639. [34] C.P. Fredlake, J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki, J.F. Brennecke, Thermophysical properties of imidazolium-based ionic liquids, J. Chem. Eng. Data 49 (2004) 954-964. [35] Y.U. Paulechka, A.G. Kabo, A.V. Blokhin, G.J. Kabo, M.P. Shevelyova, Heat capacity of ionic liquids: Experimental determination and correlations with molar volume, J. Chem. Eng. Data 55 (2010) 2719-2724. [36] M.M. Cruz, R.P. Borges, M. Godinho, C.S. Marques, E. Langa, A.P.C. Ribeiro, M.J. V. Lourenço, F.J.V. Santos, C.A. Nieto de Castro, M. Macatrão, M. Tariq, J.M.S.S. Esperança, J.N. Canongia Lopes, C.A.M. Afonso, L.P.N. Rebelo, Thermophysical and magnetic studies of two paramagnetic liquid salts: [C4mim][FeCl4] and [P66614][FeCl4], Fluid Phase Equilibria 350 (2013) 43-50. [37] Y.U. Paulechka, A.V. Blokhin, Low-temperature heat capacity and derived thermodynamic properties for 1-methyl-3-propylimidazolium bromide and 1-butyl-3-methylimidazolium iodide, J. Chem. Thermodyn. 79 (2014) 94-99. [38] Y.-H. Yu, A.N. Soriano, M.-H. Li, Heat capacities and electrical conductivities of 1-n-butyl-3-methylimidazolium-based ionic liquids, Thermochim. Acta 482 (2009) 42-48. [39] A.A. Strechan, A.G. Kabo, Y.U. Paulechka, A.V. Blokhin, G.J. Kabo, A.S. Shaplov, E. I. Lozinskaya, Thermochemical properties of 1-butyl-3-methylimidazolium nitrate, Thermochim. Acta 474 (2008) 25-31. [40] J. Safarov, M. Geppert-Rybczynska, I. Kul, E. Hassel, Thermophysical properties of 1-butyl-3-methylimidazolium acetate over a wide range of temperatures and pressures, Fluid Phase Equilibria 383 (2014) 144-155. [41] M.J. Davila, S. Aparicio, R. Alcalde, B. Garcia, J.M. Leal, On the properties of 1-butyl-3-methylimidazolium octylsulfate ionic liquid, Green Chem. 9 (2007) 221-232. [42] S.N. Shah, K.C. Lethesh, M.I.A. Mutalib, R.B.M. Pilus, Evaluation of thermophysical properties of imidazolium-based phenolate ionic liquids, Ind. Eng. Chem. Res. 54 (2015) 3697-3705. [43] J. Troncoso, C.A. Cerdeirina, Y.A. Sanmamed, L. Romani, L.P.N. Rebelo, Thermodynamic properties of imidazolium-based ionic liquids: Densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2], J. Chem. Eng. Data 51 (2006) 1856-1859. [44] A.A. Strechan, Y.U. Paulechka, A.G. Kabo, A.V. Blokhin, G.J. Kabo, 1-butyl-3-methylimidazolium tosylate ionic liquid: heat capacity, thermal stability, and phase equilibrium of its binary mixtures with water and caprolactam, J. Chem. Eng. Data 52 (2007) 1791-1799. [45] J. Safarov, F. Lesch, K. Suleymanli, A. Aliyev, A. Shahverdiyev, E. Hassel, I. Abdulagatov, Viscosity, density, heat capacity, speed of sound and other derived properties of 1-butyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate over a wide range of temperature and at atmospheric pressure, J. Chem. Eng. Data 62 (2017) 3620-3631. [46] J. Salgado, T. Teijeira, J.J. Parajo, J. Fernandez, J. Troncoso, Isobaric heat capacity of nanostructured liquids with potential use as lubricants, J. Chem. Thermodyn. 123 (2018) 107-116. [47] E. Zorębski, M. Musiał, K. Bałuszyn′ ska, M. Zorębski, M. Dzida, Isobaric and isochoric heat capacities as well as isentropic and isothermal compressibilities of di-and trisubstituted imidazolium-based ionic liquids as a function of temperature, Ind. Eng. Chem. Res. 57 (2018) 5161-5172. [48] N. Calvar, E. Gomez, E.A. Macedo, A. Dominguez, Thermal analysis and heat capacities of pyridinium and imidazolium ionic liquids, Thermochim. Acta 565 (2013) 178-182. [49] Z.H. Zhang, L.X. Sun, Z.C. Tan, F. Xu, X.C. Lv, J.L. Zeng, Y. Sawada, Thermodynamic investigation of room temperature ionic liquid -heat capacity and thermodynamic functions of BPBF4, J. Therm. Anal. Calorim. 89 (2007) 289-294. [50] E. Paulechka, A.V. Blokhin, A.S.M.C. Rodrigues, M.A.A. Rocha, L.M.N.B.F. Santos, Thermodynamics of long-chain 1-alkyl-3-methylimidazolium bis (trifluoromethanesulfonyl)imide ionic liquids, J. Chem. Thermodyn. 97 (2016) 331-340. [51] E. Gomez, N. Calvar, A. Dominguez, E.A. Macedo, Thermal analysis and heat capacities of 1-alkyl-3-methylimidazolium ionic liquids with NTf2-, TFO-, and DCA- anions, Ind. Eng. Chem. Res. 52 (2013) 2103-2110. [52] C.J. Rao, R.V. Krishnan, K.A. Venkatesan, K. Nagarajan, T.G. Srinivasan, Thermochemical properties of some bis(trifluoromethyl-sulfonyl)imide based room temperature ionic liquids, J. Therm. Anal. Calorim. 97 (2009) 937-943. [53] Y.-H. Hsu, R.B. Leron, M.-H. Li, Solubility of carbon dioxide in aqueous mixtures of (reline+monoethanolamine) at T=(313.2 to 353.2) K, J. Chem. Thermodyn. 72 (2014) 94-99. [54] D. Waliszewski, I. Stepniak, H. Piekarski, A. Lewandowski, Heat capacities of ionic liquids and their heats of solution in molecular liquids, Thermochim. Acta 433 (2005) 149-152. [55] I. Bandres, M.C. Lopez, M. Castro, J. Barbera, C. Lafuente, Thermophysical properties of 1-propylpyridinium tetrafluoroborate, J. Chem. Thermodyn. 44 (2012) 148-153. [56] Q.-S. Liu, Z.-C. Tan, U. Welz-Biermann, X.-X. Liu, Molar heat capacity and thermodynamic properties of N-alklypyridinium hexafluorophosphate salts, [Cnpy][PF6] (n=2, 3, 5), J. Chem. Thermodyn. 68 (2014) 82-89. [57] Y.-H. Yu, A.N. Soriano, M.-H. Li, Heat capacities and electrical conductivities of 1-ethyl-3-methylimidazolium-based ionic liquids, J. Chem. Thermodyn. 41 (2009) 103-108. [58] Z. Zhang, Z. Tan, L. Sun, J. Yang, X. Lv, Q. Shi, Thermodynamic investigation of room temperature ionic liquid: The heat capacity and standard enthalpy of formation of EMIES, Thermochim. Acta 447 (2006) 141-146. [59] C. Su, X. Liu, C. Zhu, M. He, Isobaric molar heat capacities of 1-ethyl-3-methylimidazolium acetate and 1-hexyl-3-methylimidazolium acetate up to 16 MPa, Fluid Phase Equilibria 427 (2016) 187-193. [60] T. Makino, M. Kanakubo, Y. Masuda, H. Mukaiyama, Physical and CO2-absorption properties of imidazolium ionic liquids with tetracyanoborate and bis(trifluoromethanesulfonyl)amide anions, J. Solution Chem. 43 (2014) 1601-1613. [61] M. Krolikowska, K. Paduszynski, M. Krolikowski, P. Lipinski, J. Antonowicz, Vapor-liquid phase equilibria and excess thermal properties of binary mixtures of ethylsulfate-based ionic liquids with water: New experimental data, correlations, and predictions, Ind. Eng. Chem. Res. 53 (2014) 18316-18325. [62] B. Tong, Q. Liu, Z. Tan, U. Welz-Biermann, Thermochemistry of alkyl pyridinium bromide ionic liquids: Calorimetric measurements and calculations, J. Phys. Chem. A 114 (2010) 3782-3787. [63] J. Benito, M. Garcia-Mardones, V. Perez-Gregorio, I. Gascon, C. Lafuente, Physicochemical study of n-ethylpyridinium bis(trifluoromethylsulfonyl) imide ionic liquid, J. Solution Chem. 43 (2014) 696-710. [64] M. Yang, J. Zhao, Q. Liu, L. Sun, P. Yan, Z. Tan, U. Welz-Biermann, Lowtemperature heat capacities of 1-alkyl-3-methylimidazolium bis(oxalato) borate ionic liquids and the influence of anion structural characteristics on thermodynamic properties, Phys. Chem. Chem. Phys. 13 (2011) 199-206. [65] N.G. Polikhronidi, R.G. Batyrova, I.M. Abdulagatov, J.W. Magee, J. Wu, Thermodynamic properties at saturation derived from experimental twophase isochoric heat capacity of 1-hexyl-3-methylimidazolium bis [(trifluoromethyl)sulfonyl] imide, Int. J. Thermophys. 37 (2016) 103-138. [66] U. Domanska, R. Bogel-Lukasik, Physicochemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide, J. Phys. Chem. B 109 (2005) 12124-12132. [67] N.M.C. Talavera-Prieto, A.G.M. Ferreira, P.N. Simoes, P.J. Carvalho, S. Mattedi, J. A.P. Coutinho, Thermophysical characterization of N-methyl-2-hydroxyethylammonium carboxilate ionic liquids, J. Chem. Thermodyn. 68 (2014) 221-234. [68] R.L. Gardas, R. Ge, P. Goodrich, C. Hardacre, A. Hussain, D.W. Rooney, Thermophysical properties of amino acid-based ionic liquids, J. Chem. Eng. Data 55 (2010) 1505-1515. [69] N.G. Manin, A.V. Kustov, O.A. Antonova, Heat capacities of crystalline tetraalkylammonium salts, Russ. J. Phys. Chem. A 86 (2012) 878-880. [70] O. Yamamuro, T. Yamada, M. Kofu, M. Nakakoshi, M. Nagao, Hierarchical structure and dynamics of an ionic liquid 1-octyl-3-methylimidazolium chloride, J. Chem. Phys. 135 (2011), 054508-054508. [71] J. Safarov, C. Bussemer, A. Aliyev, C. Lafuente, E. Hassel, I. Abdulagatov, Effect of temperature on thermal (density), caloric (heat capacity), acoustic (speed of sound) and transport (viscosity) properties of 1-octyl-3-methylimidazolium hexafluorophosphate at atmospheric pressure, J. Chem. Thermodyn. 124 (2018) 49-64. [72] Y.U. Paulechka, A.V. Blokhin, G.J. Kabo, A.A. Strechan, Thermodynamic properties and polymorphism of 1-alkyl-3-methylimidazolium bis (triflamides), J. Chem. Thermodyn. 39 (2007) 866-877. [73] K. Oster, P. Goodrich, J. Jacquemin, C. Hardacre, A.P.C. Ribeiro, A. Elsinawi, A new insight into pure and water-saturated quaternary phosphonium-based carboxylate ionic liquids: Density, heat capacity, ionic conductivity, thermogravimetric analysis, thermal conductivity and viscosity, J. Chem. Thermodyn. 121 (2018) 97-111. [74] A.F. Ferreira, P.N. Simoes, A.G.M. Ferreira, Quaternary phosphonium-based ionic liquids: Thermal stability and heat capacity of the liquid phase, J. Chem. Thermodyn. 45 (2012) 16-27. |