中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (2): 82-91.DOI: 10.1016/j.cjche.2020.11.002
• Synthetic Biotechnology and Metabolic Engineering • 上一篇 下一篇
Yaru Xie1,2,3, Lei Chen1,2,3, Tao Sun1,2,4,5, Weiwen Zhang1,2,3,4,5
收稿日期:
2020-10-06
修回日期:
2020-11-02
出版日期:
2021-02-28
发布日期:
2021-05-15
通讯作者:
Tao Sun, Weiwen Zhang
基金资助:
Yaru Xie1,2,3, Lei Chen1,2,3, Tao Sun1,2,4,5, Weiwen Zhang1,2,3,4,5
Received:
2020-10-06
Revised:
2020-11-02
Online:
2021-02-28
Published:
2021-05-15
Contact:
Tao Sun, Weiwen Zhang
Supported by:
摘要: Development and utilization of “liquid sunshine” could be one of key solutions to deal with the issues of fossil fuel depletion and increasing carbon dioxide. Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis, and their activity accounts for ~25% of the total carbon fixation on earth. More importantly, besides their traditional roles as primary producers, cyanobacteria could be modified as “photosynthetic cell factories” to produce renewable fuels and chemicals directly from CO2 driven by solar energy, with the aid of cutting-edging synthetic biology technology. Towards their large-scale biotechnological application in the future, many challenges still need to be properly addressed, among which is cyanobacterial cell factories inevitably suffer from high light (HL) stress during large-scale outdoor cultivation, resulting in photodamage and even cell death, limiting their productivity. In this review, we critically summarized recent progress on deciphering molecular mechanisms to HL- and developing HL-tolerant chassis in cyanobacteria, aiming at facilitating construction of HLresistant chassis and promote the future application of the large-scale outdoor cultivation of cyanobacterial cell factories. Finally, the future directions on cyanobacterial chassis engineering were discussed.
Yaru Xie, Lei Chen, Tao Sun, Weiwen Zhang. Deciphering and engineering high-light tolerant cyanobacteria for efficient photosynthetic cell factories[J]. 中国化学工程学报, 2021, 29(2): 82-91.
Yaru Xie, Lei Chen, Tao Sun, Weiwen Zhang. Deciphering and engineering high-light tolerant cyanobacteria for efficient photosynthetic cell factories[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 82-91.
[1] T.L. Hamilton, D.A. Bryant, J.L. Macalady, The role of biology in planetary evolution: Cyanobacterial primary production in low-oxygen Proterozoic oceans, Environ. Microbiol. 18 (2016) 325–340. [2] P.E. Jensen, D. Leister, Cyanobacteria as an experimental platform for modifying bacterial and plant photosynthesis, Front. Bioeng. Biotechnol. 2 (2014)7. [3] X. Gao, T. Sun, G. Pei, L. Chen, W. Zhang, Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals, Appl. Microbiol. Biotechnol. 100 (2016) 3401–3413. [4] N.J. Oliver, C.A. Rabinovitch-Deere, A.L. Carroll, N.E. Nozzi, A.E. Case, S. Atsumi, Cyanobacterial metabolic engineering for biofuel and chemical production, Curr. Opin. Chem. Biol. 35 (2016) 43–50. [5] P. Farrokh, M. Sheikhpour, A. Kasaeian, H. Asadi, R. Bavandi, Cyanobacteria as an eco-friendly resource for biofuel production: A critical review, Biotechnol. Prog. 35 (2019) e2835. [6] Z. Gao, H. Zhao, Z. Li, X. Tan, X.J.E. Lu, E., Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria, Energy Environ. Sci. 5 (2012) 9857–9865. [7] M. Kanno, A.L. Carroll, S. Atsumi, Global metabolic rewiring for improved CO (2) fixation and chemical production in cyanobacteria, Nat. Commun. 8 (2017) 14724. [8] P.C. Lin, F. Zhang, H.B. Pakrasi, Enhanced production of sucrose in the fastgrowing cyanobacterium Synechococcus elongatus UTEX 2973, Sci. Rep. 10 (2020) 390. [9] R. Carpine, G. Olivieri, K. Hellingwerf, A. Pollio, A. Marzocchella, Industrial production of poly-b-hydroxybutyrate from CO2: Can cyanobacteria meet this challenge?, Processes 8 (2020) 323. [10] J. Moreno, M.A. Vargas, H. Rodrıguez, J. Rivas, M.G. Guerrero, Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047, Biomol. Eng. 20 (2003) 191–197. [11] N.G. Schoepp, R.L. Stewart, V. Sun, A.J. Quigley, D. Mendola, S.P. Mayfield, M.D. Burkart, System and method for research-scale outdoor production of microalgae and cyanobacteria, Bioresour. Technol. 166 (2014) 273–281. [12] M. Muramatsu, Y. Hihara, Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses, J. Plant. Res. 125 (2012) 11–39. [13] L. Huang, M.P. McCluskey, H. Ni, R.A. LaRossa, Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light, J. Bacteriol. 184 (2002) 6845–6858. [14] H. Takahashi, Y. Kusama, X. Li, S. Takaichi, Y. Nishiyama, Overexpression of orange carotenoid protein protects the repair of PSII under strong light in Synechocystis sp. PCC 6803, Plant Cell Physiol. 60 (2018) 367–375. [15] P. Saetang, Y. Hihara, I. Yumoto, Y. Orikasa, H. Okuyama, Y. Nishiyama, Overexpressed superoxide dismutase and catalase act synergistically to protect the repair of PSII during photoinhibition in Synechococcus elongatus PCC 7942, Plant Cell Physiol. 57 (2016) 1899–1907. [16] T. Hasunuma, M. Matsuda, Y. Senga, S. Aikawa, M. Toyoshima, G. Shimakawa, C. Miyake, A. Kondo, Overexpression of flv3 improves photosynthesis in the cyanobacterium Synechocystis sp. PCC6803 by enhancement of alternative electron flow, Biotechnol. Biofuels 7 (2014), 493. [17] C. MacGregor-Chatwin, M. Sener, S.F.H. Barnett, A. Hitchcock, M.C. BarnhartDailey, K. Maghlaoui, J. Barber, J.A. Timlin, K. Schulten, C.N. Hunter, Lateral segregation of photosystem I in cyanobacterial thylakoids, Plant Cell 29 (2017) 1119–1136. [18] S. Heinz, P. Liauw, J. Nickelsen, M. Nowaczyk, Analysis of photosystem II biogenesis in cyanobacteria, Biochimica et Biophysica Acta (BBA) -Bioenergetics 1857 (2016) 274–287. [19] D. Baniulis, E. Yamashita, H. Zhang, S.S. Hasan, W.A. Cramer, Structurefunction of the cytochrome b6f complex, Photochem. Photobiol. 84 (2008) 1349–1358. [20] D. Baniulis, E. Yamashita, J.P. Whitelegge, A.I. Zatsman, M.P. Hendrich, S.S. Hasan, C.M. Ryan, W.A. Cramer, Structure-function, stability, and chemical modification of the cyanobacterial cytochrome b6f complex from Nostoc sp. PCC 7120, J. Biol. Chem. 284 (2009) 9861–9869. [21] M. Li, A. Calteau, D.A. Semchonok, T.A. Witt, J.T. Nguyen, N. Sassoon, E.J. Boekema, J. Whitelegge, M. Gugger, B.D. Bruce, Physiological and evolutionary implications of tetrameric photosystem I in cyanobacteria, Nat. Plants 5 (2019) 1309–1319. [22] V. Vecchi, S. Barera, R. Bassi, L. Dall’Osto, Potential and Challenges of Improving Photosynthesis in Algae, Plants (Basel, Switzerland), 9, 2020. [23] P. Fromme, P. Jordan, N. Krauß, Structure of photosystem I, Biochimica et Biophysica Acta (BBA) -Bioenergetics 1507 (2001) 5–31. [24] X. Pan, J. Ma, X. Su, P. Cao, W. Chang, Z. Liu, X. Zhang, M. Li, Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II, Science 360 (2018) 1109–1113. [25] R. Szymanska, I. Ślesak, A. Orzechowska, J.J.E. Kruk, E. Botany, Physiological and biochemical responses to high light and temperature stress in plants, Environ. Exp. Bot. 139 (2017) 165–177. [26] D.V. Vetoshkina, M. Borisova-Mubarakshina, I.A. Naydov, M. Kozuleva, B. Ivanov, Impact of high light on reactive oxygen species production within photosynthetic biological membranes, J. Biol. Life Sci. 6 (2) (2015) 50–60. [27] A. Matuszyń ska, N.P. Saadat, O. Ebenhöh, Balancing energy supply during photosynthesis –a theoretical perspective, Physiol. Plant. 166 (2019) 392–402. [28] P.J. Gollan, Y.L. Melo, A. Tiwari, M. Tikkanen, E.M. Aro, Interaction between photosynthetic electron transport and chloroplast sinks triggers protection and signalling important for plant productivity, Philos. Trans. Royal Soc. B –Biol. Sci. 372 (2017) 20160390. [29] P. Pospíšil, Y. Yamamoto, Damage to photosystem II by lipid peroxidation products, Biochimica et Biophysica Acta (BBA) -General Subjects 1861 (2017) 457–466. [30] A. Zavafer, M.H. Cheah, W. Hillier, W.S. Chow, S. Takahashi, Photodamage to the oxygen evolving complex of photosystem II by visible light, Sci. Rep. 5 (2015) 16363. [31] I. Vass, K. Cser, Janus-faced charge recombinations in photosystem II photoinhibition, Trends Plant Sci. 14 (2009) 200–205. [32] E. Gantt, B. Grabowski, F. Cunningham Jr, Antenna systems of red algae: Phycobilisomes with photosystem II and chlorophyll complexes with photosystem I, Advances in Photosynthesis and Respiration (2003) 307–322. [33] K. Ogawa, K. Yoshikawa, F. Matsuda, Y. Toya, H. Shimizu, Transcriptome analysis of the cyanobacterium Synechocystis sp. PCC 6803 and mechanisms of photoinhibition tolerance under extreme high light conditions, J. Biosci. Bioeng. 126 (2018) 596–602. [34] R. Kalla, R. Bhalerao, P. Gustafsson, Regulation of phycobilisome rod proteins and mRNA at different light intensities in the cyanobacterium Synechococcus 6301, Gene 126 (1993) 77–83. [35] V. Chukhutsina, L. Bersanini, E.M. Aro, H. van Amerongen, Cyanobacterial light-harvesting phycobilisomes uncouple from photosystem I during darkto-light transitions, Sci. Rep. 5 (2015) 14193. [36] P.I. Calzadilla, F. Muzzopappa, P. Setif, D. Kirilovsky, Different roles for ApcD and ApcF in Synechococcus elongatus and Synechocystis sp. PCC 6803 phycobilisomes, Biochimica et Biophysica Acta (BBA) -Bioenergetics 1860 (2019) 488–498. [37] D.K. Saini, S. Pabbi, P. Shukla, Cyanobacterial pigments: Perspectives and biotechnological approaches, Food Chem. Toxicol., Food Chem. Toxicol. 120 (2018) 616–624. [38] M. Muramatsu, K. Sonoike, Y. Hihara, Mechanism of downregulation of photosystem I content under high-light conditions in the cyanobacterium Synechocystis sp. PCC 6803, Microbiology (Reading, England), 155 (2009) 989–996. [39] P. Xu, L. Tian, M. Kloz, R. Croce, Molecular insights into Zeaxanthin-dependent quenching in higher plants, Sci. Rep. 5 (2015) 13679. [40] D. Kirilovsky, C.A. Kerfeld, Cyanobacterial photoprotection by the orange carotenoid protein, Nat. Plants 2 (2016) 16180. [41] N.N. Sluchanko, Y.B. Slonimskiy, E.A. Shirshin, M. Moldenhauer, T. Friedrich, E. G. Maksimov, OCP–FRP protein complex topologies suggest a mechanism for controlling high light tolerance in cyanobacteria, Nat. Commun. 9 (2018) 3869. [42] E.G. Maksimov, N.N. Sluchanko, Y.B. Slonimskiy, K.S. Mironov, K.E. Klementiev, M. Moldenhauer, T. Friedrich, D.A. Los, V.Z. Paschenko, A.B. Rubin, The unique protein-to-protein carotenoid transfer mechanism, Biophys. J. 113 (2017) 402–414. [43] H. Bao, M.R. Melnicki, C.A. Kerfeld, Structure and functions of Orange Carotenoid Protein homologs in cyanobacteria, Curr. Opin. Plant Biol. 37 (2017) 1–9. [44] C.A. Kerfeld, M.R. Melnicki, M. Sutter, M.A. Dominguez-Martin, Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs, The New Phytologist 215 (2017) 937–951. [45] R.L. Leverenz, M. Sutter, A. Wilson, S. Gupta, A. Thurotte, C. Bourcier de Carbon, C.J. Petzold, C. Ralston, F. Perreau, D. Kirilovsky, C.A. Kerfeld, A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection, Science 348 (2015) 1463–1466. [46] M.R. Melnicki, R.L. Leverenz, M. Sutter, R. López-Igual, A. Wilson, E.G. Pawlowski, F. Perreau, D. Kirilovsky, C.A. Kerfeld, Structure, diversity, and evolution of a new family of soluble carotenoid-binding proteins in cyanobacteria, Mol. Plant 9 (2016) 1379–1394. [47] R. López-Igual, A. Wilson, R.L. Leverenz, M.R. Melnicki, C. Bourcier de Carbon, M. Sutter, A. Turmo, F. Perreau, C.A. Kerfeld, D. Kirilovsky, Different functions of the paralogs to the N-terminal domain of the orange carotenoid protein in the cyanobacterium Anabaena sp. PCC 7120, Plant Physiol. 171 (2016) 1852–1866. [48] H. Bao, M.R. Melnicki, E.G. Pawlowski, M. Sutter, M. Agostoni, S. LechnoYossef, F. Cai, B.L. Montgomery, C.A. Kerfeld, Additional families of orange carotenoid proteins in the photoprotective system of cyanobacteria, Nat. Plants 3 (2017) 17089. [49] S. Daddy, J. Zhan, S. Jantaro, C. He, Q. He, Q. Wang, A novel high lightinducible carotenoid-binding protein complex in the thylakoid membranes of Synechocystis PCC 6803, Sci. Rep. 5 (2015) 9480. [50] H. Staleva, J. Komenda, M.K. Shukla, V. Šlouf, R. Kaňa, T. Polívka, R. Sobotka, Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins, Nat. Chem. Biol. 11 (2015) 287–291. [51] D.M. Niedzwiedzki, T. Tronina, H. Liu, H. Staleva, J. Komenda, R. Sobotka, R.E. Blankenship, T. Polívka, Carotenoid-induced non-photochemical quenching in the cyanobacterial chlorophyll synthase–HliC/D complex, Biochimica et Biophysica Acta (BBA) -Bioenergetics 1857 (2016) 1430–1439. [52] W. Huang, Y.J. Yang, J.H. Wang, H. Hu, Photorespiration is the major alternative electron sink under high light in alpine evergreen sclerophyllous Rhododendron species, Plant Sci. 289 (2019) 110275. [53] J.D. Rochaix, Regulation of photosynthetic electron transport, Biochimica et Biophysica Acta (BBA) -Bioenergetics 1807 (2011) 375–383. [54] S. Wada, H. Yamamoto, Y. Suzuki, W. Yamori, T. Shikanai, A. Makino, Flavodiiron protein substitutes for cyclic electron flow without competing CO2 assimilation in rice, Plant Physiol. 176 (2018) 1509–1518. [55] C. Zhang, J. Shuai, Z. Ran, J. Zhao, Z. Wu, R. Liao, J. Wu, W. Ma, M. Lei, Structural insights into NDH-1 mediated cyclic electron transfer, Nat. Commun. 11 (2020)888. [56] F. Wang, J. Yan, G.J. Ahammed, X. Wang, X. Bu, H. Xiang, Y. Li, J. Lu, Y. Liu, H. Qi, M. Qi, T. Li, PGR5/PGRL1 and NDH mediate far-red light-induced photoprotection in response to chilling stress in tomato, Front. Plant Sci. 11 (2020)669. [57] Y. Allahverdiyeva, M. Ermakova, M. Eisenhut, P. Zhang, P. Richaud, M. Hagemann, L. Cournac, E.M. Aro, Interplay between flavodiiron proteins and photorespiration in Synechocystis sp. PCC 6803, J. Biol. Chem. 286 (2011) 24007–24014. [58] L. Bersanini, N. Battchikova, M. Jokel, A. Rehman, I. Vass, Y. Allahverdiyeva, E. M. Aro, Flavodiiron protein Flv2/Flv4-related photoprotective mechanism dissipates excitation pressure of PSII in cooperation with phycobilisomes in Cyanobacteria, Plant Physiol. 164 (2014) 805–818. [59] P. Zhang, M. Eisenhut, A. Brandt, D. Carmel, H.M. Silen, I. Vass, Y. Allahverdiyeva, T.A. Salminen, E.M. Aro, Operon flv4-flv2 provides cyanobacterial photosystem II with flexibility of electron transfer, Plant Cell 24 (2012) 1952–1971. [60] Y. Allahverdiyeva, J. Isojärvi, P. Zhang, E.M. Aro, Cyanobacterial oxygenic photosynthesis is protected by flavodiiron proteins, Life (Basel) (2015) 716–743. [61] R.D. Kulkarni, S.S. Golden, Adaptation to high light intensity in Synechococcus sp. strain PCC 7942: regulation of three psbA genes and two forms of the D1 protein, J. Bacteriol. 176 (1994) 959–965. [62] L. Li, E.M. Aro, A.H. Millar, Mechanisms of photodamage and protein turnover in photoinhibition, Trends Plant Sci. 23 (2018) 667–676. [63] F. Wang, J. Liu, M. Chen, L. Zhou, Z. Li, Q. Zhao, G. Pan, S.H.R. Zaidi, F. Cheng, Involvement of abscisic acid in PSII photodamage and D1 protein turnover for light-induced premature senescence of rice flag leaves, PLoS ONE 11 (2016), e0161203. [64] F. Wang, Y. Qi, A. Malnoe, Y. Choquet, F.A. Wollman, C.D. Vitry, The high light response and redox control of thylakoid FtsH protease in Chlamydomonas reinhardtii, Mol. Plant 10 (2017) 99–114. [65] Y. Kato, K. Hyodo, W. Sakamoto, The photosystem II repair cycle requires FtsH turnover through the EngA GTPase, Plant Physiol. 178 (2018) 596–611. [66] M.A.H. Prieto, T.A. Semeniuk, J.G. Lamia, M.E. Futschik, The transcriptional landscape of the photosynthetic model cyanobacterium Synechocystis sp. PCC6803, Sci. Rep. 6 (2016) 22168. [67] T.H. Lin, M.Y. Rao, H.W. Lu, C.W. Chiou, S.T. Lin, H.W. Chao, Z.L. Zheng, H.C. Cheng, T.M. Lee, A role for glutathione reductase and glutathione in the tolerance of Chlamydomonas reinhardtii to photo-oxidative stress, Physiol. Plant. 162 (2018) 35–48. [68] J. Cameron, H. Pakrasi, Essential role of glutathione in acclimation to environmental and redox perturbations in the cyanobacterium Synechocystis sp. PCC 6803, Plant Physiol. 154 (2010) 1672–1685. [69] A. Latifi, M. Ruiz, C.C. Zhang, Oxidative stress in cyanobacteria, FEMS Microbiol. Rev. 33 (2009) 258–278. [70] S. Gunes, S. Tamburaci, E. Imamoglu, M.C. Dalay, Determination of superoxide dismutase activities in different cyanobacteria for scavenging of reactive oxygen species, J. Biologically Active Products from Nat. 5 (2015) 25–32. [71] R. Prajapati, S. Yadav, S. Mitra, P. Rai, R. Mishra, N. Atri, Genome-wide assessment of putative superoxide dismutases in unicellular and filamentous cyanobacteria, Brazilian Arch. Biol. Technol. 62 (2019), https://doi.org/10.1590/1678-4324-2019170747. [72] H. Kirst, C. Formighieri, A. Melis, Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size, Biochimica et Biophysica Acta (BBA) -Bioenergetics 1837 (2014) 1653–1664. [73] A. Nagarajan, L.E. Page, M. Liberton, H.B. Pakrasi, Consequences of decreased light harvesting capability on photosystem II function in Synechocystis sp. PCC 6803, Life (Basel) 4 (2014) 903–914. [74] J. Kwon, G. Bernat, H. Wagner, M. Rogner, S. Rexroth, Reduced lightharvesting antenna: Consequences on cyanobacterial metabolism and photosynthetic productivity, Algal Res. 2 (2013) 188–195. [75] A. Joseph, S. Aikawa, K. Sasaki, F. Matsuda, T. Hasunuma, A. Kondo, Increased biomass production and glycogen accumulation in apcE gene deleted Synechocystis sp. PCC 6803, AMB Express 4 (2014) 17. [76] D.J. Lea-Smith, P. Bombelli, J.S. Dennis, S.A. Scott, A.G. Smith, C.J. Howe, Phycobilisome-deficient strains of Synechocystis sp. PCC 6803 have reduced size and require carbon-limiting conditions to exhibit enhanced productivity, Plant Physiol. 165 (2014) 705–714. [77] H.Y. Su, H.H. Chou, T.J. Chow, T.M. Lee, J.S. Chang, W.L. Huang, H.J. Chen, Improvement of outdoor culture efficiency of cyanobacteria by overexpression of stress tolerance genes and its implication as bio-refinery feedstock, Bioresour. Technol. 244 (2017) 1294–1303. [78] H. Jimbo, A. Noda, H. Hayashi, T. Nagano, I. Yumoto, Y. Orikasa, H. Okuyama, Y. Nishiyama, Expression of a highly active catalase VktA in the cyanobacterium Synechococcus elongatus PCC 7942 alleviates the photoinhibition of photosystem II, Photosynth. Res. 117 (2013) 509–515. [79] H. Jimbo, T. Izuhara, Y. Hihara, T. Hisabori, Y. Nishiyama, Light-inducible expression of translation factor EF-Tu during acclimation to strong light enhances the repair of photosystem II, Proceedings of the National Academy of Sciences of the USA, 116 (2019) 21268-21273. [80] H. Miranda, P. Immerzeel, L. Gerber, K. Hörnaeus, S.B. Lind, B. Pattanaik, P. Lindberg, F. Mamedov, P. Lindblad, Sll1783, a monooxygenase associated with polysaccharide processing in the unicellular cyanobacterium Synechocystis PCC 6803, Physiol. Plant. 161 (2017) 182–195. [81] A. Srivastava, K. Brilisauer, A.K. Rai, A. Ballal, K. Forchhammer, A.K. Tripathi, Down-regulation of the alternative sigma factor SigJ confers a photoprotective phenotype to Anabaena PCC 7120, Plant Cell Physiol. 58 (2016) 287–297. [82] C.T. Nomura, T. Sakamoto, D.A. Bryant, Roles for heme–copper oxidases in extreme high-light and oxidative stress response in the cyanobacterium Synechococcus sp. PCC 7002, Arch. Microbiol. 185 (2006) 471–479. [83] A. Berepiki, A. Hitchcock, C.M. Moore, T.S. Bibby, Tapping the unused potential of photosynthesis with a heterologous electron sink, ACS Synth. Biol. 5 (2016) 1369–1375. [84] J. Ungerer, K.E. Wendt, J.I. Hendry, C.D. Maranas, H.B. Pakrasi, Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus elongatus UTEX 2973, Proceedings of the National Academy of Sciences of the USA, 115 (2018) 201814912. [85] W. Lou, X. Tan, K. Song, S. Zhang, G. Luan, C. Li, X. Lu, A specific single nucleotide polymorphism in the ATP synthase gene significantly improves environmental stress tolerance of Synechococcus elongatus PCC 7942, Appl. Environ. Microbiol. 84 (2018) e01222–01218. [86] L.L. Cui, Y.S. Lu, Y. Li, C. Yang, X.X. Peng, Overexpression of glycolate oxidase confers improved photosynthesis under high light and high temperature in rice, Front. Plant Sci. 7 (2016) 1165, https://doi.org/10.3389/fpls:2016.01165. [87] C. Guan, X. Liu, X. Song, G. Wang, J. Ji, C. Jin, Overexpression of a peroxiredoxin Q gene, SsPrxQ, in Eustoma grandiflorum Shinn enhances its tolerance to salt and high light intensity, Mol. Breed. 33 (2014) 657–667. [88] Y. Lu, H. Liu, R. Saer, V. Li, H. Zhang, L. Shi, C. Goodson, M. Gross, R. Blankenship, A molecular mechanism for non-photochemical quenching in cyanobacteria, Biochemistry 56 (2017) 2812–2823. [89] R.I. Khan, Y. Wang, S. Afrin, B. Wang, Y. Liu, X. Zhang, L. Chen, W. Zhang, L. He, G. Ma, Transcriptional regulator PrqR plays a negative role in glucose metabolism and oxidative stress acclimation in Synechocystis sp. PCC 6803, Sci. Rep. 6 (2016), 32507. [90] B. Demmig-Adams, J.J. Stewart, T.A. Burch, W.W. Adams, Insights from placing photosynthetic light harvesting into context, J. Phys. Chem. Lett. 5 (2014) 2880–2889. [91] B.W. Abramson, B. Kachel, D.M. Kramer, D. Ducat, Increased photochemical efficiency in cyanobacteria via an engineered sucrose sink, Plant Cell Physiol. 57 (2016) 2451–2460. [92] G. Luan, S. Zhang, M. Wang, X. Lu, Progress and perspective on cyanobacterial glycogen metabolism engineering, Biotechnol. Adv. 37 (2019) 771–786. [93] D.C. Ducat, J.A. Avelar-Rivas, J.C. Way, P.A. Silver, Rerouting carbon flux to enhance photosynthetic productivity, Appl. Environ. Microbiol. 78 (2012) 2660–2668. [94] J.W.K. Oliver, I.M.P. Machado, H. Yoneda, S. Atsumi, Cyanobacterial conversion of carbon dioxide to 2,3-butanediol, Proceedings of the National Academy of Sciences of the USA 110 (2013) 1249–1254. [95] X. Li, C.R. Shen, J.C.J.P.R. Liao, Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942, Photosynth. Res. 120 (2014) 301–310. [96] D. Jaiswal, A. Sengupta, S. Sengupta, S. Madhu, H.B. Pakrasi, P.P. Wangikar, A novel cyanobacterium Synechococcus elongatus PCC 11802 has distinct genomic and metabolomic characteristics compared to its neighbor PCC 11801, Sci. Rep. 10 (2020) 191. [97] A. Wlodarczyk, T.T. Selao, B. Norling, P.J. Nixon, Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production, Commun. Biol. 3 (2020) 215. [98] J. Yu, M. Liberton, P.F. Cliften, R.D. Head, J.M. Jacobs, R.D. Smith, D.W. Koppenaal, J.J. Brand, H.B. Pakrasi, Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2, Sci. Rep. 5 (2015) 8132. [99] D. Jaiswal, A. Sengupta, S.V. Sohoni, S. Sengupta, A.G. Phadnavis, H.B. Pakrasi, P.P. Wangikar, Genome features and biochemical characteristics of a robust, fast growing and naturally transformable cyanobacterium Synechococcus elongatus PCC 11801 isolated from India, Sci. Rep. 8 (2018) 16632. [100] Y. Qiao, W. Wang, X. Lu, Engineering cyanobacteria as cell factories for direct trehalose production from CO2, Metab. Eng. 62 (2020) 161–171. [101] T. Sun, S. Li, X. Song, J. Diao, L. Chen, W. Zhang, Toolboxes for cyanobacteria: Recent advances and future direction, Biotechnol. Adv. 36 (2018) 1293–1307. [102] J. Ungerer, H.B. Pakrasi, Cpf1 Is A versatile tool for CRISPR genome editing across diverse species of cyanobacteria, Sci. Rep. 6 (2016) 39681. [103] T. Wang, C. Guan, J. Guo, B. Liu, Y. Wu, Z. Xie, C. Zhang, X.H. Xing, Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance, Nat. Commun. 9 (2018) 2475. [104] S. Li, C.B. Jendresen, J. Landberg, L.E. Pedersen, N. Sonnenschein, S.I. Jensen, A. T. Nielsen, Genome-wide CRISPRi-based identification of targets for decoupling growth from production, ACS Synth. Biol. 9 (2020) 1030–1040. [105] F. Rousset, L. Cui, E. Siouve, C. Becavin, F. Depardieu, D. Bikard, Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors, PLoS Genet. 14 (2018), https://doi.org/10.1371/journal.pgen.1007749. [106] L. Yao, K. Shabestary, S.M. Björk, J.A. Samuelsson, H.N. Joensson, M. Jahn, E.P. Hudson, Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes, Nat. Commun. 11 (2020) 1666. [107] T.R. Maarleveld, J. Boele, F.J. Bruggeman, B. Teusink, A data integration and visualization resource for the metabolic network of Synechocystis sp. PCC 6803, Plant Physiol. 164 (2014) 1111–1121. [108] E. Vitkin, T. Shlomi, MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks, Genome Biol. 13 (2012) 1–11. [109] L. You, L. He, Y. Tang, Photoheterotrophic fluxome in Synechocystis sp. strain PCC 6803 and its implications for cyanobacterial bioenergetics, J. Bacteriol. 197 (2015) 943–950. [110] L. Gao, G. Pei, L. Chen, W. Zhang, A global network-based protocol for functional inference of hypothetical proteins in Synechocystis sp. PCC 6803, J. Microbiol. Methods 116 (2015) 44–52. [111] Ungerer J., Lin P., Chen H., Pakrasi H.B., Adjustments to photosystem stoichiometry and electron transfer proteins are key to the remarkably fast growth of the cyanobacterium Synechococcus elongatus UTEX 2973, mBio. https://doi.org/10.1128/mBio.02327-17. [112] M.H. Abernathy, J. Yu, F. Ma, M. Liberton, J. Ungerer, W.D. Hollinshead, S. Gopalakrishnan, L. He, C.D. Maranas, H.B. Pakrasi, Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolicfluxanalysis,Biotechnol.Biofuels10(2017)273. [113] T.J. Mueller, J. Ungerer, H.B. Pakrasi, C.D. Maranas, Identifying the metabolic differences of a fast-growth phenotype in Synechococcus UTEX 2973, Sci. Rep. 7 (2017) 41569. [114] D.J. Scanlan, S. Sundaram, J. Newman, N.H. Mann, N.G. Carr, Characterization of a zwf mutant of Synechococcus sp. strain PCC 7942, J. Bacteriol. 177 (1995) 2550–2553. [115] B.E. Rubin, K.M. Wetmore, M.N. Price, S. Diamond, R.K. Shultzaberger, L.C. Lowe, G. Curtin, A.P. Arkin, A.M. Deutschbauer, S.S. Golden, The essential gene set of a photosynthetic organism, Proceedings of the National Academy of SciencesoftheUSA112(2015) E6634–E6643. [116] E.A. Guilherme, F.E.L. Carvalho, D.M. Daloso, J.A.G. Silveira, Increase in assimilatory nitrate reduction and photorespiration enhances CO2 assimilation under high light-induced photoinhibition in cotton, Environ. Exp. Bot. 159 (2019) 66–74. [117] W. Huang, H. Hu, S.B. Zhang, Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight, Front. Plant Sci. 6 (2015) 621. [118] J.I. Hendry, S. Gopalakrishnan, J. Ungerer, H.B. Pakrasi, Y.J. Tang, C.D. Maranas, Genome-scale fluxome of Synechococcus elongatus UTEX 2973 using transient 13C-labeling data, Plant Physiol. 179 (2019) 761–769. [119] M. Giordano, J. Beardall, J.A. Raven, CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution, Annu. Rev. Plant Biol. 56 (2005) 99–131. [120] T.J. Johnson, C. Halfmann, J.D. Zahler, R. Zhou, W.R. Gibbons, Increasing the tolerance of filamentous cyanobacteria to next-generation biofuels via directed evolution, Algal Res. 18 (2016) 250–256. [121] Y. Wang, M. Shi, X. Niu, X. Zhang, L. Gao, L. Chen, J. Wang, W. Zhang, Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803, Microb. Cell Fact. 13 (2014) 151. [122] C. Xu, T. Sun, S. Li, L. Chen, W. Zhang, Adaptive laboratory evolution of cadmium tolerance in Synechocystis sp. PCC 6803, Biotechnol. Biofuels 11 (2018) 205. [123] T. Matsusako, Y. Toya, K. Yoshikawa, H. Shimizu, Identification of alcohol stress tolerance genes of Synechocystis sp. PCC 6803 using adaptive laboratory evolution, Biotechnol. Biofuels 10 (2017) 307. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||