中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (2): 74-81.DOI: 10.1016/j.cjche.2020.11.006
• Synthetic Biotechnology and Metabolic Engineering • 上一篇 下一篇
Huiling Wei, Mengyue Wu, Aili Fan, Haijia Su
收稿日期:
2020-07-22
修回日期:
2020-11-06
出版日期:
2021-02-28
发布日期:
2021-05-15
通讯作者:
Aili Fan, Haijia Su
基金资助:
Huiling Wei, Mengyue Wu, Aili Fan, Haijia Su
Received:
2020-07-22
Revised:
2020-11-06
Online:
2021-02-28
Published:
2021-05-15
Contact:
Aili Fan, Haijia Su
Supported by:
摘要: Trichoderma is an ascomycete fungal genus widely distributed in the soils. Several species were selected, engineered and utilized for protein production for decades. The high extracellular secretion capability and eukaryotic post-translational modification machinery make Trichoderma spp. particularly interesting hosts. In this review, we summarized the recombinant proteins produced in Trichoderma since 2014, concerning their origins, hosts, promoters, terminators, signal peptides, yields and commonly used media. Meanwhile, strategies and merging trends in protein production and strain engineering are classified and summarized regarding codon optimization, promoter utilization, transcription factor regulation, post-translational modification and proteolytic degradation inhibition. With state-of-art biotechnologies and more available expression platforms, Trichoderma spp. could be more successful hosts to produce recombinant proteins as desired, i.e. better enzyme formula for efficient cellulose degradation or functional protein with high purity and yield.
Huiling Wei, Mengyue Wu, Aili Fan, Haijia Su. Recombinant protein production in the filamentous fungus Trichoderma[J]. 中国化学工程学报, 2021, 29(2): 74-81.
Huiling Wei, Mengyue Wu, Aili Fan, Haijia Su. Recombinant protein production in the filamentous fungus Trichoderma[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 74-81.
[1] H.C.S. Hackbart, A.R. Machado, A. Christ-ribeiro, L. Prietto, E. Badiale-furlong, Reduction of aflatoxins by Rhizopus oryzae and Trichoderma reesei, Mycotoxin Res. 30 (3) (2014) 141–149. [2] H. Nevalainen, R. Peterson, Heterologous expression of proteins in Trichoderma, Biotechnol. Biol. Trichoderma (2014) 89–102. [3] S. Gomez, M. Lopez-Estepa, F.J. Fernandez, T. Suarez, M.C. Vega, Alternative eukaryotic expression systems for the production of proteins and protein complexes, in: ed. Vega (Ed.), Advanced Technologies for Protein Complex Production and Characterization, M.C, Springer, Switzerland, 2016. [4] M. Zoglowek, P.S. Lübeck, B.K. Ahring, M. Lübeck, Heterologous expression of cellobiohydrolases in filamentous fungi –An update on the current challenges, achievements and perspectives, Process Biochem. 50 (2) (2015) 211–220. [5] R.H. Bischof, J. Ramoni, B. Seiboth, Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei, Microb. Cell Fact. 15 (1) (2016) 106. [6] S. Haaning, K. Kragh, S. Shipovskov, A. Miasnikov, M. Ma, L.F.R. Millan, L. Barnard, S. Yu, E. Meinjohanns, S. Bak, Proline-tolerant tripeptidyl peptidases for use in the preparation of low-antigenicity protein hydrolyzates for food use, PCT Pat., WO2016062857A1 (2016). [7] J.R. Cherry, A.L. Fidantsef, Directed evolution of industrial enzymes: An update, Curr. Opin. Biotech. 14 (4) (2003) 438–443. [8] R. Peterson, H. Nevalainen, Trichoderma reesei RUT-C30 –thirty years of strain improvement, Microbiology 158 (1) (2012) 58–68. [9] P. Liu, A. Lin, G. Zhang, J. Zhang, Y. Chen, T. Shen, J. Zhao, D. Wei, W. Wang, Enhancement of cellulase production in Trichoderma reesei RUT-C30 by comparative genomic screening, Microb. Cell Fact. 18 (1) (2019) 1–16. [10] X. Sun, X. Su, Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi, World J. Microbiol. Biotechnol. 35 (4) (2019) 54. [11] X. Zhang, X. Li, L. Xia, Heterologous expression of an alkali and thermotolerant lipase from Talaromyces thermophilus in Trichoderma reesei, Appl. Biochem. Biotechnol. 176 (6) (2015) 1722–1735. [12] X. Sun, X. Xue, M. Li, F. Gao, Z. Hao, H. Huang, H. Luo, L. Qin, B. Yao, X. Su, Efficient coproduction of mannanase and cellulase by the transformation of a codon-optimized endomannanase gene from Aspergillus niger into Trichoderma reesei, J. Agric. Food Chem. 65 (50) (2017) 11046–11053. [13] J. Joensuu, M. Vitikainen, C. Landowsk, M. Saloheimo, A subunit vaccine against porcine post-weaning diarrhoea, PCT Pat., WO2019175477A1 (2019). [14] Y. Kagawa, S. Hiramatsu, K. Yamada, Preparation of recombinant Trichoderma producing b-adaptin without or with modified large subunit for efficient recombinant protein fermentative production under lowered viscosity condition, PCT Pat., WO2020027010A1 (2020). [15] A. Sun, R. Peterson, J. Te’o, H. Nevalainen, Expression of the mammalian peptide hormone obestatin in Trichoderma reesei, New Biotechnol. 33 (1) (2016) 99–106. [16] I.S. Druzhinina, C.P. Kubicek, Genetic engineering of Trichoderma reesei cellulases and their production, Microb. Biotechnol. 10 (6) (2017) 1485–1499. [17] O.P. Ward, Production of recombinant proteins by filamentous fungi, Biotechnol. Adv. 30 (5) (2012) 1119–1139. [18] Y.H. Li, X.Y. Zhang, F. Zhang, L.C. Peng, D.B. Zhang, A. Kondo, F.W. Bai, X.Q. Zhao, Optimization of cellulolytic enzyme components through engineering Trichoderma reesei and on-site fermentation using the soluble inducer for cellulosic ethanol production from corn stover, Biotechnol. Biofuels 11 (2018) 49. [19] N. Sun, Y. Qian, W. Wang, Y. Zhong, M. Dai, Heterologous expression of Talaromyces emersonii cellobiohydrolase Cel7A in Trichoderma reesei increases the efficiency of corncob residues saccharification, Biotechnol. Lett. 40 (7) (2018) 1119–1126. [20] S. Ma, M. Preims, F. Piumi, L. Kappel, B. Seiboth, E. Record, D. Kracher, R. Ludwig, Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems, Microb. Cell Fact. 16 (1) (2017) 37. [21] L. Long, H. Zhao, D. Ding, M. Xu, S. Ding, Heterologous expression of two Aspergillus niger feruloyl esterases in Trichoderma reesei for the production of ferulic acid from wheat bran, Bioprocess Biosyst. Eng. 41 (5) (2018) 593–601. [22] R. Zhang, Y. Liu, Y. Zhang, D. Feng, S. Hou, W. Guo, K. Niu, Y. Jiang, L. Han, L. Sindhu, X. Fang, Identification of a thermostable fungal lytic polysaccharide monooxygenase and evaluation of its effect on lignocellulosic degradation, Appl. Microbiol. Biotechnol. 103 (14) (2019) 5739–5750. [23] H. Nevalainen, P. Bergquist, V.S.J. Te’o, Making a bacterial thermophilic enzyme in a fungal expression system, Curr. Protoc. Protein Sci. 92 (1) (2018) e52. [24] J. Zhang, C. Wu, W. Wang, W. Wang, D. Wei, A versatile Trichoderma reesei expression system for the production of heterologous proteins, Biotechnol. Lett. 40 (6) (2018) 965–972. [25] N. Shibata, M. Suetsugu, H. Kakeshita, K. Igarashi, H. Hagihara, Y. Takimura, A novel GH10 xylanase from Penicillium sp. accelerates saccharification of alkaline-pretreated bagasse by an enzyme from recombinant Trichoderma reesei expressing Aspergillus b-glucosidase, Biotechnol. Biofuels 10 (2017) 278. [26] J. Wang, D. Zeng, G. Liu, S. Wang, S. Yu, Truncation of a mannanase from Trichoderma harzianum improves its enzymatic properties and expression efficiency in Trichoderma reesei, J. Ind. Microbiol. Biotechnol. 41 (1) (2014) 125–133. [27] C.P. Landowski, E. Mustalahti, R. Wahl, L. Croute, D. Sivasiddarthan, A. Westerholm-Parvinen, B. Sommer, C. Ostermeier, B. Helk, J. Saarinen, M. Saloheimo, Enabling low cost biopharmaceuticals: high level interferon alpha-2b production in Trichoderma reesei, Microb. Cell Fact. 15 (1) (2016) 104. [28] E. Balcazar-Lopez, L.H. Mendez-Lorenzo, R.A. Batista-Garcia, U. EsquivelNaranjo, M. Ayala, V.V. Kumar, O. Savary, H. Cabana, A. Herrera-Estrella, J.L. Folch-Mallol, Xenobiotic compounds degradation by heterologous expression of a Trametes sanguineus laccase in Trichoderma atroviride, PLoS ONE 11 (2) (2016) e0147997. [29] J. Cuamatzi-Flores, E. Esquivel-Naranjo, S. Nava-Galicia, A. Lopez-Munguia, A. Arroyo-Becerra, M.A. Villalobos-Lopez, M. Bibbins-Martinez, Differential regulation of Pleurotus ostreatus dye peroxidases gene expression in response to dyes and potential application of recombinant Pleos-DyP1 in decolorization, PLoS ONE 14 (1) (2019) e0209711. [30] C. Lauber, T. Schwarz, Q.K. Nguyen, P. Lorenz, G. Lochnit, H. Zorn, Identification, heterologous expression and characterization of a dye-decolorizing peroxidase of Pleurotus sapidus, AMB Express 7 (1) (2017) 164. [31] S. Dominguez, M.B. Rubio, R.E. Cardoza, S. Gutierrez, C. Nicolas, W. Bettiol, R. Hermosa, E. Monte, Nitrogen metabolism and growth enhancement in tomato plants challenged with Trichoderma harzianum expressing the Aspergillus nidulans acetamidase amdS gene, Front. Microbiol. 7 (2016) 1182. [32] R.M. Gopalakrishnan, T. Manavalan, J. Ramesh, K.P. Thangavelu, K. Heese, Improvement of saccharification and delignification efficiency of Trichoderma reesei Rut-C30 by genetic bioengineering, Microorganisms 8 (2) (2020) 8020159. [33] M. Saloheimo, T.M. Pakula, The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina), Microbiology 158 (Pt 1) (2012) 46–57. [34] X. Jin, L. Xia, Heterologous expression of an endo-b-1,4-glucanase gene from the anaerobic fungus Orpinomyces PC-2 in Trichoderma reesei, World J.Microbiol. Biot. 27 (12) (2011) 2913–2920. [35] N. Carreras-Villasenor, J.G. Rico-Ruiz, R.A. Chavez Montes, L. Yong-Villalobos, J. F. Lopez-Hernandez, P. Martinez-Hernandez, L. Herrera-Estrella, A. HerreraEstrella, D. Lopez-Arredondo, Assessment of the ptxD gene as a growth and selective marker in Trichoderma atroviride using Pccg6, a novel constitutive promoter, Microb. Cell Fact. 19 (1) (2020) 69. [36] F. Zheng, R. Yang, Y. Cao, W. Zhang, X. Lv, X. Meng, Y. Zhong, G. Chen, Q. Zhou, W. Liu, Engineering Trichoderma reesei for hyperproduction of cellulases on glucose to efficiently saccharify pretreated corncobs, J. Agric. Food Chem. (2020). [37] E. Fitz, F. Wanka, B. Seiboth, The promoter toolbox for recombinant gene expression in Trichoderma reesei, Front. Bioeng. Biotechnol. 6 (2018) 135. [38] X. Sun, X. Zhang, H. Huang, Y. Wang, T. Tu, Y. Bai, Y. Wang, J. Zhang, H. Luo, B. Yao, X. Su, Engineering the cbh1 promoter of Trichoderma reesei for enhanced protein production by replacing the binding sites of a transcription repressor ACE1 to those of the activators, J. Agr. Food Chem. 68 (2020) 1337–1346. [39] W. Wang, F.S. Meng, P. Liu, S. Yang, D. Wei, Construction of a promoter collection for genes co-expression in filamentous fungus Trichoderma reesei, J. Ind. Microbiol. Biotechnol. 41 (2014) 1709–1718. [40] M. Häkkinen, M.J. Valkonen, A. Westerholm-Parvinen, N. Aro, M. Arvas, M. Vitikainen, M. Penttilä, M. Saloheimo, T.M. Pakula, Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production, Biotechnol. Biofuels 7 (14) (2014) 1–21. [41] J.G. Linger, L.E. Taylor 2nd, J.O. Baker, T. Vander Wall, S.E. Hobdey, K. Podkaminer, M.E. Himmel, S.R. Decker, A constitutive expression system for glycosyl hydrolase family 7 cellobiohydrolases in Hypocrea jecorina, Biotechnol. Biofuels 8 (2015) 45. [42] M. Arentshorst, S. Barends, P. Kruithof, I. Nikolaev, J.P. Ouedraogo, A.F.J. Ram, Fungal host strains, recombinant DNA constructs, and methods of use, PCT Pat., WO2016089815A1 (2016). [43] A. Rantasalo, M. Vitikainen, T. Paasikallio, J. Jantti, C.P. Landowski, D. Mojzita, Novel genetic tools that enable highly pure protein production in Trichoderma reesei, Sci. Rep. 9 (1) (2019) 5032. [44] L. Zhang, S. Zhang, X. Jiang, W. Wei, W. Wang, D. Wei, A novel host-vector system for heterologous protein co-expression and purification in the Trichoderma reesei industrial strain RUT-C30, Biotechnol. Lett. 38 (1) (2016) 89–96. [45] V. Subramanian, L.A. Schuster, K.T. Moore, L.E. Taylor 2nd, J.O. Baker, T.A. Vander Wall, J.G. Linger, M.E. Himmel, S.R. Decker, A versatile 2A peptidebased bicistronic protein expressing platform for the industrial cellulase producing fungus, Trichoderma reesei, Biotechnol. Biofuels 10 (2017) 34. [46] G. Wang, W. Jia, N. Chen, K. Zhang, L. Wang, P. Lv, R. He, M. Wang, D. Zhang, A GFP-fusion coupling FACS platform for advancing the metabolic engineering of filamentous fungi, Biotechnol. Biofuels 11 (1) (2018). [47] B. Yao, X. Su, F. Gao, H. Luo, H. Huang, Y. Bai, Y. Wang, T. Tu, Y. Wang, K. Meng, Expression vector applicable to screening for recombinant strain of Trichoderma reesei, PCT Pat., WO2020020003A1 (2020). [48] N. Aro, A. Saloheimo, M. Ilmén, M. Penttilä, ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei, J. Biol. Chem. 276 (26) (2001) 24309–24314. [49] L. Xiong, A.K. Kameshwar, X. Chen, Z. Guo, C. Mao, S. Chen, W. Qin, The ACEII recombinant Trichoderma reesei QM9414 strains with enhanced xylanase production and its applications in production of xylitol from tree barks, Microb. Cell Fact. 15 (1) (2016) 215. [50] S. Zeilinger, A. Ebner, T. Marosits, R. Mach, C. Kubicek, The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element, Mol. Genet. Genomics 266 (1) (2001) 56–63. [51] R. Karimi Aghcheh, Z. Nemeth, L. Atanasova, E. Fekete, M. Paholcsek, E. Sandor, B. Aquino, I.S. Druzhinina, L. Karaffa, C.P. Kubicek, The VELVET A orthologue VEL1 of Trichoderma reesei regulates fungal development and is essential for cellulase gene expression, PLoS ONE 9 (11) (2014) e112799. [52] Z.B. Huang, X.Z. Chen, L.N. Qin, H.Q. Wu, X.Y. Su, Z.Y. Dong, A novel major facilitator transporter TrSTR1 is essential for pentose utilization and involved in xylanase induction in Trichoderma reesei, Biochem. Biophys. Res. Commun. 460 (3) (2015) 663–669. [53] L. Chen, G. Zou, J. Wang, J. Wang, R. Liu, Y. Jiang, G. Zhao, Z. Zhou, Characterization of the Ca2+ -responsive signaling pathway in regulating the expression and secretion of cellulases in Trichoderma reesei Rut-C30, Mol. Microbiol. 100 (3) (2016) 560–575. [54] F. Zhang, X. Zhao, F. Bai, Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1, Bioresour. Technol. 247 (2018) 676–683. [55] Y. Qian, Y. Sun, L. Zhong, N. Sun, Y. Sheng, Y. Qu, Y. Zhong, The GATA-type transcriptional factor Are1 modulates the expression of extracellular proteases and cellulases in Trichoderma reesei, Int. J. Mol. Sci. 20 (17) (2019) 4100. [56] A. Saloheimo, N. Aro, M. Ilmén, M. Penttilä, Isolation of the ace1 gene encoding a Cys2-His2 transcription factor involved in regulation of activity of the cellulase promoter cbh1 of Trichoderma reesei, J. Biol. Chem. 275 (8) (2000) 5817–5825. [57] Q.S. Meng, C.G. Liu, X.Q. Zhao, F.W. Bai, Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass, J. Biotechnol. 285 (2018) 56–63. [58] R. He, L. Ma, C. Li, W. Jia, D. Li, D. Zhang, S. Chen, Trpac1, a pH response transcription regulator, is involved in cellulase gene expression in Trichoderma reesei, Enzyme Microb. Technol. 67 (2014) 17–26. [59] N.D. Daranagama, K. Shioya, M. Yuki, H. Sato, Y. Ohtaki, Y. Suzuki, Y. Shida, W. Ogasawara, Proteolytic analysis of Trichoderma reesei in celluase-inducing condition reveals a role for trichodermapepsin (TrAsP) in cellulase production, J. Ind. Microbiol. Biotechnol. 46 (6) (2019) 831–842. [60] Y. Cao, F. Zheng, L. Wang, G. Zhao, G. Chen, W. Zhang, W. Liu, Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei, Mol. Microbiol. 105 (1) (2017) 65–83. [61] R. Karimi-Aghcheh, J.W. Bok, P.A. Phatale, K.M. Smith, S.E. Baker, A. Lichius, M. Omann, S. Zeilinger, B. Seiboth, C. Rhee, N.P. Keller, M. Freitag, C.P. Kubicek, Functional analyses of Trichoderma reesei LAE1 reveal conserved and contrasting roles of this regulator, G3 (Bethesda Md.) 3 (2) (2013) 369–378. [62] Q. Meng, F. Zhang, C. Liu, X. Zhao, F. Bai, Identification of a novel repressor encoded by the putative gene ctf1 for cellulase biosynthesis in Trichoderma reesei through artificial zinc finger engineering, Biotechnol. Bioeng. 117 (6) (2020) 1747–1760. [63] X. Zhang, Y. Li, X. Zhao, F. Bai, Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator, Bioresour. Technol. 223 (2017) 317–322. [64] Y. Xue, J. Han, Y. Li, J. Liu, L. Gan, M. Long, Promoting cellulase and hemicellulase production from Trichoderma orientalis EU7-22 by overexpression of transcription factors Xyr1 and Ace3, Bioresour. Technol. 296 (2020) 122355. [65] A. Nakamura, T. Tasaki, D. Ishiwata, M. Yamamoto, Y. Okuni, A. Visootsat, M. Maximilien, H. Noji, T. Uchiyama, M. Samejima, K. Igarashi, R. Iino, Singlemolecule imaging analysis of binding, processive movement, and dissociation of cellobiohydrolase Trichoderma reesei Cel6A and its domains on crystalline cellulose, J. Biol. Chem. 291 (43) (2016) 22404–22413. [66] F. Qi, W. Zhang, F. Zhang, G. Chen, W. Liu, Deciphering the effect of the different N-glycosylation sites on the secretion, activity, and stability of cellobiohydrolase I from Trichoderma reesei, Appl. Environ. Microbiol. 80 (13) (2014) 3962–3971. [67] P.K. Chaffey, X. Guan, X. Wang, Y. Ruan, Y. Li, S.G. Miller, A.H. Tran, T.N. Koelsch, L.F. Pass, Z. Tan, Quantitative effects of O-linked glycans on protein folding, Biochemistry 56 (34) (2017) 4539–4548. [68] L. Chen, M.R. Drake, M.G. Resch, E.R. Greene, M.E. Himmel, P.K. Chaffey, G.T. Beckham, Z. Tan, Specificity of O-glycosylation in enhancing the stability and cellulose binding affinity of Family 1 carbohydratebinding modules, Proc Natl Acad Sci USA 111 (2014) 7612–7617. [69] C.E. Pena, M.G.S. Costa, P.R. Batista, Glycosylation effects on the structure and dynamics of a full-length Cel7A cellulase, Biochimica et Biophysica Acta (BBA) –Proteins and Proteomics 1868 (1) (2020) 140248. [70] E.K. Culyba, J.L. Price, S.R. Hanson, A. Dhar, C.H. Wong, M. Gruebele, E.T. Powers, J.W. Kelly, Protein native-state stabilization by placing aromatic side chains in N-glycosylated reverse turns, Science 331 (6017) (2011) 571–575. [71] J. Eichler, Protein glycosylation, Curr. Biol. 29 (7) (2019) R229–R231. [72] A. Amore, B.C. Knott, N.T. Supekar, A. Shajahan, P. Azadi, P. Zhao, L. Wells, J.G. Linger, S.E. Hobdey, T.A. Vander Wall, T. Shollenberger, J.M. Yarbrough, Z. Tan, M.F. Crowley, M.E. Himmel, S.R. Decker, G.T. Beckham, and L.E. Taylor, 2nd, Distinct roles of N-and O-glycans in cellulase activity and stability. Proc. Natl. Acad. Sci. USA 114(52) (2017) 13667–13672. [73] A.S. Dotsenko, A.V. Gusakov, P.V. Volkov, A.M. Rozhkova, A.P. Sinitsyn, Nlinked glycosylation of recombinant cellobiohydrolase I (Cel7A) from Penicillium verruculosum and its effect on the enzyme activity, Biotechnol. Bioeng. 113 (2) (2016) 283–291. [74] C.M. Payne, M.G. Resch, L. Chen, M.F. Crowley, M.E. Himmel, L.E. Taylor 2nd, M. Sandgren, J. Stahlberg, I. Stals, Z. Tan, G.T. Beckham, Glycosylated linkers in multimodular lignocellulosedegrading enzymes dynamically bind to cellulose, Proc Natl Acad Sci USA 110 (36) (2013) 14646–14651. [75] X. Feng, X. Wang, B. Han, C. Zou, Y. Hou, L. Zhao, C. Li, Design of glyco-linkers at multiple structural levels to modulate protein stability, J. Phys. Chem. Lett. 9 (16) (2018) 4638–4645. [76] J. Natunen, J. Hiltunen, A. Huuskonen, M. Saloheimo, C. Ostermeier, B.P. Sommer, R. Wahl, O-mannosyltransferase deficient filamentous fungi and their use for recombinant antibody production, PCT Pat., WO2015001049A1 (2019). [77] S. Wildt, R.G. Miele, J.H. Nett, R.C. Davidson, Method to engineer mammaliantype carbohydrate structures, US. Pat., US8932825B2(2015). [78] A. Rodriguez-Iglesias, M. Schmoll, Protein phosphatases regulate growth, development, cellulases and secondary metabolism in Trichoderma reesei, Sci Rep-UK 9 (1) (2019) 10995. [79] D.A. Estell, M.C. Miller, Filamentous fungi with improved protein production due to proteinase inhibitor gene mutations, PCT Pat., WO2018093752A1 (2018). [80] J. Natunen, A. Leppanen, H. Salminen, J. Hiltunen, A. Kanerva, A. Heiskanen, A. Westerholm-Parvinen, G. Schmidt, A. Huuskonen, E. Mustalahti, Production of recombinant glycoproteins with mammalian-like N-glycans in filamentous fungi, PCT Pat., WO2019175477A1 (2016). [81] G. Zhang, Y. Zhu, D. Wei, W. Wang, Enhanced production of heterologous proteins by the filamentous fungus Trichoderma reesei via disruption of the alkaline serine protease SPW combined with a pH control strategy, Plasmid 71 (2014) 16–22. [82] C.P. Landowski, A. Huuskonen, R. Wahl, A. Westerholm-Parvinen, A. Kanerva, A.L. Hanninen, N. Salovuori, M. Penttila, J. Natunen, C. Ostermeier, B. Helk, J. Saarinen, M. Saloheimo, Enabling low cost biopharmaceuticals: A systematic approach to delete proteases from a well-known protein production host Trichoderma reesei, PLoS ONE 10 (8) (2015) e0134723. [83] Y. Qian, L. Zhong, Y. Sun, N. Sun, L. Zhang, W. Liu, Y. Qu, Y. Zhong, Enhancement of cellulase production in Trichoderma reesei via disruption of multiple protease genes identified by comparative secretomics, Front. Microbiol. 10 (2019) 2784. [84] J. Lin, X. Zhang, B. Song, W. Xue, X. Su, X. Chen, Z. Dong, Improving cellulase production in submerged fermentation by the expression of a Vitreoscilla hemoglobin in Trichoderma reesei, AMB Express 7 (1) (2017) 203. [85] K.J. Chen, J.C. Tang, B.H. Xu, S.L. Lan, Y. Cao, Degradation enhancement of rice straw by co-culture of Phanerochaete chrysosporium and Trichoderma viride, Sci. Rep. 9 (1) (2019) 19708. [86] E. Stappler, J.D. Walton, S. Beier, M. Schmoll, Abundance of secreted proteins of Trichoderma reesei is regulated by light of different intensities, Front. Microbiol. 8 (2017) 2586. |
[1] | Baoyu Liu, Feng Xiong, Jianwen Zhang, Manna Wang, Yi Huang, Yanxiong Fang, Jinxiang Dong. Enhanced ortho-selective t–butylation of phenol over sulfonic acid functionalized mesopore MTW zeolites[J]. 中国化学工程学报, 2023, 60(8): 1-7. |
[2] | Chaoqun Wu, Xun Liu, Fujun Yao, Xin Yang, Yan Wang, Wenyuan Hu. Crystalline-magnetism action in biomimetic mineralization of calcium carbonate[J]. 中国化学工程学报, 2023, 59(7): 146-152. |
[3] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination[J]. 中国化学工程学报, 2023, 59(7): 193-199. |
[4] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene[J]. 中国化学工程学报, 2023, 59(7): 240-250. |
[5] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate[J]. 中国化学工程学报, 2023, 57(5): 1-9. |
[6] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments[J]. 中国化学工程学报, 2023, 57(5): 63-71. |
[7] | Chenyang Zhao, Yinhan Cheng, Guangfei Qu, Yongheng Yuan, Fenghui Wu, Ye Liu, Shan Liu, Junyan Li, Ping Ning. High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(II)/Cu(II) composite[J]. 中国化学工程学报, 2023, 57(5): 98-108. |
[8] | Suhang Xun, Cancan Wu, Lida Tang, Mengmeng Yuan, Haofeng Chen, Minqiang He, Wenshuai Zhu, Huaming Li. One-pot in-situ synthesis of coralloid supported VO2 catalyst for intensified aerobic oxidative desulfurization[J]. 中国化学工程学报, 2023, 56(4): 136-140. |
[9] | Xueying Zhu, Zhaoyang Zhang, Bin Jia, Yingjin Yuan. Current advances of biocontainment strategy in synthetic biology[J]. 中国化学工程学报, 2023, 56(4): 141-151. |
[10] | Juan Du, Aibing Chen, Senlin Hou, Xueqing Gao. Self-deposition for mesoporous carbon nanosheet with supercapacitor application[J]. 中国化学工程学报, 2023, 55(3): 34-40. |
[11] | Fufeng Liu, Luying Jiang, Jingcheng Sang, Fuping Lu, Li Li. Molecular basis of cross-interactions between Aβ and Tau protofibrils probed by molecular simulations[J]. 中国化学工程学报, 2023, 55(3): 173-180. |
[12] | Yu Kiat Lin, Yan-Na Sun, Yu Fan, Hui Yi Leong, Dong-Qiang Lin, Shan-Jing Yao. UV/Vis-based process analytical technology to improve monoclonal antibody and host cell protein separation[J]. 中国化学工程学报, 2023, 55(3): 230-235. |
[13] | Mengting Liu, Xuexue Dong, Zengjing Guo, Aihua Yuan, Shuying Gao, Fu Yang. Enabling tandem oxidation of benzene to benzenediol over integrated neighboring V-Cu oxides in mesoporous silica[J]. 中国化学工程学报, 2023, 55(3): 236-245. |
[14] | Xueqing Chen, Weiqun Gao, Yan Sun, Xiaoyan Dong. Multiple effects of polydopamine nanoparticles on Cu2+-mediated Alzheimer's β-amyloid aggregation[J]. 中国化学工程学报, 2023, 54(2): 144-152. |
[15] | Qian Zhu, Yan Zhuang, Hongqing Zhao, Peng Zhan, Cong Ren, Changsheng Su, Wenqiang Ren, Jiawen Zhang, Di Cai, Peiyong Qin. 2,5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS2/CdIn2S4 flower-like heterojunctions[J]. 中国化学工程学报, 2023, 54(2): 180-191. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||