中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (2): 272-290.DOI: 10.1016/j.cjche.2020.11.010
• Biomedical Engineering • 上一篇 下一篇
Kok Bing Tan1, Daohua Sun1, Jiale Huang1, Tareque Odoom-Wubah2, Qingbiao Li1,3
收稿日期:
2020-09-23
修回日期:
2020-11-14
出版日期:
2021-02-28
发布日期:
2021-05-15
通讯作者:
Tareque Odoom-Wubah, Qingbiao Li
基金资助:
Kok Bing Tan1, Daohua Sun1, Jiale Huang1, Tareque Odoom-Wubah2, Qingbiao Li1,3
Received:
2020-09-23
Revised:
2020-11-14
Online:
2021-02-28
Published:
2021-05-15
Contact:
Tareque Odoom-Wubah, Qingbiao Li
Supported by:
摘要: Nanomaterials are materials in which at least one of the dimensions of the particles is 100 nm and below. There are many types of nanomaterials, but noble metal nanoparticles are of interest due to their uniquely large surface-to-volume ratio, high surface area, optical and electronic properties, high stability, easy synthesis, and tunable surface functionalization. More importantly, noble metal nanoparticles are known to have excellent compatibility with bio-materials, which is why they are widely used in biological applications. The synthesis method of noble metal nanoparticles conventionally involves the reduction of the noble metal salt precursor by toxic reaction agents such as NaBH4, hydrazine, and formaldehyde. This is a major drawback for researchers involved in biological application researches. Hence, the bio-synthesis of noble metal nanoparticles (NPs) by bio-materials via bio-reduction provides an alternative method to synthesize noble metal nanoparticles which are potentially non-toxic and safer for biological application. In this review, the bio-synthesis of noble metal nanoparticle including gold nanoparticle (AuNPs), silver nanoparticle (AgNPs), platinum nanoparticle (PtNPs), and palladium nanoparticle (PdNPs) are first discussed. This is followed by a discussion of these biosynthesized noble metal in biological applications including antimicrobial, wound healing, anticancer drug, and bioimaging. Based on these, it can be concluded that the study on bio-synthesized noble metal nanoparticles will expand further involving bio-reduction by unexplored bio-materials. However, many questions remain on the feasibility of bio-synthesized noble metal nanoparticles to replace existing methods on various biological applications. Nevertheless, the current development of the biological application by bio-synthesized noble metal NPs is still intensively ongoing, and will eventually reach the goal of full commercialization.
Kok Bing Tan, Daohua Sun, Jiale Huang, Tareque Odoom-Wubah, Qingbiao Li. State of arts on the bio-synthesis of noble metal nanoparticles and their biological application[J]. 中国化学工程学报, 2021, 29(2): 272-290.
Kok Bing Tan, Daohua Sun, Jiale Huang, Tareque Odoom-Wubah, Qingbiao Li. State of arts on the bio-synthesis of noble metal nanoparticles and their biological application[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 272-290.
[1] D.R. Boverhof, C.M. Bramante, J.H. Butala, S.F. Clancy, W.M. Lafranconi, J. West, S.C. Gordon, Comparative assessment of nanomaterial definitions and safety evaluation considerations, Regul. Toxicol. Pharmacol. 73 (1) (2015) 137–150. [2] A. Yoko, T. Aida, N. Aoki, D. Hojo, M. Koshimizu, S. Ohara, G. Seong, S. Takami, T. Togashi, T. Tomai, T. Tsukada, T. Adschiri, Application 53 -Supercritical Hydrothermal Synthesis of Nanoparticles, Elsevier, Japan, 2018. [3] J. Peternela, M.F. Silva, M.F. Vieira, R. Bergamasco, A.M.S. Vieira, Synthesis and impregnation of copper oxide nanoparticles on activated carbon through green synthesis for water pollutant removal, Mater. Res. 21 (1) (2018) 1–11. [4] Y.B. Pottathara, Y. Grohens, V. Kokol, N. Kalarikkal, S. Thomas, Synthesis and processing of emerging two-dimensional nanomaterials, Elsevier, India, 2019. [5] A. Huczko, Template-based synthesis of nanomaterials, Appl. Phys. A Mater. Sci. Process 70 (2000) 365–376. [6] F.W.M. Ling, H.A. Abdulbari, S.-Y. Chin, Synthesis and characteristics of silica nano-particles using modified sol–gel method in microreactor, Mater. Today Proc. (2020) 1–7. [7] N.D. Kandpal, N. Sah, R. Loshali, R. Joshi, J. Prasad, Co-precipitation method of synthesis and characterization of iron oxide nanoparticles, J. Sci. Ind. Res. 73 (2) (2014) 87–90. [8] S. Kumar, R. Srivastava, J. Chattopadhyay, MxOy/M/graphene coated multishelled nano-sphere as Bi-functional electrocatalysts for hydrogen and oxygen evolution, Int. J. Hydrogen Energy 1–16 (2020). [9] A.H.A. Elmekawy, E.G. Iashina, I.S. Dubitskiy, S.V. Sotnichuk, I.V. Bozhev, K.S. Napolskii, D. Menzel, A.A. Mistonov, Magnetic properties and FORC analysis of iron nanowire arrays, Mater. Today Commun. 25 (2020) 101609. [10] M.A.K. Purbayanto, E. Nurfani, M.A. Naradipa, R. Widita, A. Rusydi, Y. Darma, Enhancement in green luminescence of ZnO nanorods grown by dcunbalanced magnetron sputtering at room temperature, Opt. Mater., 108 110418. [11] S. Lv, L. Ma, X. Shen, H. Tong, One-step copper-catalyzed synthesis of porous carbon nanotubes for high-performance supercapacitors, Micropor. Mesopor. Mater. 310 (2020) 110670. [12] C.L. Chiang, J.M. Yang, 11 -Flame retardance and thermal stability of polymer/graphene nanosheet oxide composites, Elsevier, Taiwan, 2017. [13] F.U. Khan, Z.U.H. Khan, J. Ma, A.U. Khan, M. Sohail, Y. Chen, Y. Yang, X. Pan, An Astragalus membranaceus based eco-friendly biomimetic synthesis approach of ZnO nanoflowers with an excellent antibacterial, antioxidant and electrochemical sensing effect, Mater. Sci. Eng. C. 118 (2021) 111432. [14] N.A. Younes, H.S. Hassan, M.F. Elkady, A.M. Hamed, M.F.A. Dawood, Impact of synthesized metal oxide nanomaterials on seedlings production of three Solanaceae crops, Heliyon 6 (1) (2020) e03188. [15] J. Plácido, S. Bustamante López, K.E. Meissner, D.E. Kelly, S.L. Kelly, Multivariate analysis of biochar-derived carbonaceous nanomaterials for detection of heavy metal ions in aqueous systems, Sci. Total Environ. 688 (2019) 751–761. [16] K.S. Rao, K. El-Hami, T. Kodaki, K. Matsushige, K. Makino, A novel method for synthesis of silica nanoparticles, J. Colloid Interface Sci. 289 (1) (2005) 125–131. [17] K.B. Tan, A.K. Reza, A.Z. Abdullah, B. Amini Horri, B. Salamatinia, Development of self-assembled nanocrystalline cellulose as a promising practical adsorbent for methylene blue removal, Carbohydr. Polym. 199 (2018) 92–101. [18] S. Salamat, M. Hadavifar, H. Rezaei, Preparation of nanochitosan-STP from shrimp shell and its application in removing of malachite green from aqueous solutions, J. Environ. Chem. Eng. 7 (5) (2019) 100328. [19] Z. Zhang, P.C. Lin, Chapter 7 -Noble metal nanoparticles: synthesis, and biomedical implementations, Elsevier, China, 2018. [20] S. Chandra, A. Kumar, P.K. Tomar, Synthesis and characterization of copper nanoparticles by reducing agent, J. Saudi Chem. Soc. 18 (2) (2014) 149–153. [21] S.R. Ghanta, K. Muralidharan, Chemical synthesis of aluminum nanoparticles, J. Nanoparticle Res. 15 (1715) (2013) 1–10. [22] H. Chen, J. Wang, D. Huang, X. Chen, J. Zhu, D. Sun, J. Huang, Q. Li, Plantmediated synthesis of size-controllable Ni nanoparticles with alfalfa extract, Mater. Lett. 122 (2014) 166–169. [23] G. Ren, D. Hu, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip, R.P. Allaker, Characterisation of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrob. Agents 33 (6) (2009) 587–590. [24] K.S. Siddiqi, A. ur Rahman, Tajuddin, A. Husen, Properties of zinc oxide nanoparticles and their activity against microbes, Nanoscale Res. Lett. 13 (141) (2018) 1–13. [25] T. Odoom-Wubah, X. Chen, J. Huang, Q. Li, Template-free biosynthesis of flowerlike CuO microstructures using Cinnamomum camphora leaf extract at room temperature, Mater. Lett. 167 (2015) 387–390. [26] J. Huang, J. Zhou, J. Zhuang, H. Gao, D. Huang, L. Wang, W. Wu, Q. Li, D.P. Yang, M.Y. Han, Strong near-Infrared absorbing and biocompatible CuS nanoparticles for rapid and efficient photothermal ablation of grampositive and -negative bacteria, ACS Appl. Mater. Interfaces 9 (42) (2017) 36606–36614. [27] L.E. Deng, Y. Li, L. Gong, J. Wang, Preparation of Ag2S nanocrystals for NIR photothermal therapy application, J. Inorg. Mater. 33 (8) (2018) 825–831. [28] J.N. Sharma, D.K. Pattadar, B.P. Mainali, F.P. Zamborini, Size determination of metal nanoparticles based on electrochemically measured surface-area-tovolume ratios, Anal. Chem. 90 (15) (2018) 9308–9314. [29] E.A. Coronado, E.R. Encina, F.D. Stefani, Optical properties of metallic nanoparticles: Manipulating light, heat and forces at the nanoscale, Nanoscale 3 (10) (2011) 4042–4059. [30] I. Fratoddi, R. Matassa, L. Fontana, I. Venditti, G. Familiari, C. Battocchio, E. Magnano, S. Nappini, G. Leahu, A. Belardini, R. Li Voti, C. Sibilia, Electronic properties of a functionalized noble metal nanoparticles covalent network, J. Phys. Chem. C 121 (33) (2017) 18110–18119. [31] J. Cure, E. Mattson, K. Cocq, H. Assi, S. Jensen, K. Tan, M. Catalano, S. Yuan, H. Wang, L. Feng, P. Zhang, S. Kwon, J.F. Veyan, Y. Cabrera, G. Zhang, J. Li, M. Kim, H.C. Zhou, Y.J. Chabal, T. Thonhauser, High stability of ultra-small and isolated gold nanoparticles in metal-organic framework materials, J. Mater. Chem. A 7 (2019) 17536–17546. [32] V. Neuschmelting, S. Harmsen, N. Beziere, H. Lockau, H.T. Hsu, R. Huang, D. Razansky, V. Ntziachristos, M.F. Kircher, Dual-modality surface-enhanced resonance raman scattering and multispectral optoacoustic tomography nanoparticle approach for brain tumor delineation, Small 14 (23) (2018) e1800740. [33] J. Dai, Y. Guo, L. Xu, G. Zhuang, Y. Zheng, D. Sun, J. Huang, Q. Li, Bovine serum albumin templated porous CeO2 to support Au catalyst for benzene oxidation, Mol. Catal. 486 (2020) 110849. [34] T. Odoom-Wubah, Q. Li, R. Mulka, M. Chen, J. Huang, Q. Li, R. Luque, Calcified shrimp waste supported Pd NPs as an efficient catalyst toward benzene destruction, ACS Sustain. Chem. Eng. 8 (1) (2020) 486–497. [35] M. Du, G. Zhan, X. Yang, H. Wang, W. Lin, Y. Zhou, J. Zhu, L. Lin, J. Huang, D. Sun, L. Jia, Q. Li, Ionic liquid-enhanced immobilization of biosynthesized Au nanoparticles on TS-1 toward efficient catalysts for propylene epoxidation, J. Catal. 283 (2) (2011) 192–201. [36] A.J. Stephen, N.V. Rees, I. Mikheenko, L.E. Macaskie, Platinum and palladium bio-synthesized nanoparticles as sustainable fuel cell catalysts, Front. Energy Res. 7 (66) (2019) 1–13. [37] G. Zhan, M. Du, D. Sun, J. Huang, X. Yang, Y. Ma, A.R. Ibrahim, Q. Li, Vaporphase propylene epoxidation with H2/O2 over bioreduction Au/TS-1 catalysts: Synthesis, characterization, and optimization, Ind. Eng. Chem. Res. 50 (15) (2011) 9019–9026. [38] X. Jing, H. Wang, H. Chen, J. Huang, Q. Li, D. Sun, Biosy, nthesized Ag/a-Al2O3 catalyst for ethylene epoxidation: the influence of silver precursors, RSC Adv. 4 (52) (2014) 27597–27603. [39] Z. Xiao, M. Yuan, B. Yang, Z. Liu, J. Huang, D. Sun, Plant-mediated synthesis of highly active iron nanoparticles for Cr (VI) removal: Investigation f the leading biomolecules, Chemosphere 15 (2016) 357–364. [40] J. Hu, Z. Song, L. Chen, H. Yang, J. Li, R. Richards, Adsorption properties of MgO (111) nanoplates for the dye pollutants from wastewater, J. Chem. Eng. Data 55 (9) (2010) 3742–3748. [41] L. Lin, E. Crew, H. Yan, S. Shan, Z. Skeete, D. Mott, T. Krentsel, J. Yin, N.A. Chernova, J. Luo, M.H. Engelhard, C. Wang, Q. Li, C.J. Zhong, Bifunctional nanoparticles for SERS monitoring and magnetic intervention of assembly and enzyme cutting of DNAs, J. Mater. Chem. B 1 (34) (2013) 4320–4330. [42] L. Wu, W. Wu, X. Jing, J. Huang, D. Sun, T. Odoom-Wubah, H. Liu, H. Wang, Q. Li, Trisodium citrate-assisted biosynthesis of silver nanoflowers by Canarium album foliar broths as a platform for sers detection, Ind. Eng. Chem. Res. 52 (14) (2013) 5085–5094. [43] S. Sreenivasan, P. Thalappil, Noble Metal Nanoparticles, Springer, India, 2013. [44] J.H. Ryu, S.H. Jung, K.S. Sim, S.H. Choi, Synthesis of Pt-Ru@PThB catalyst by cirradiation and NaBH4 as reducing agent, Appl. Radiat. Isot. 67 (7–8) (2009) 1449–1453. [45] S.M. Roopan, G. Elango, Chapter 15 -Self-assembly of transition metal nanoparticles using marine sources, William Andrew Publishing, India, 2016. [46] C.B. Norris, P.R. Joseph, M.R. MacKiewicz, S.M. Reed, Minimizing formaldehyde use in the synthesis of gold-silver core-shell nanoparticles, Chem. Mater. 22 (12) (2010) 3637–3645. [47] National Center for Biotechnology Information, PubChem Compound Summary for CID 4311764, Sodium borohydride, 2020 [2020-10-26] https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-borohydride. [48] M. Matsumoto, H. Kano, M. Suzuki, T. Katagiri, Y. Umeda, S. Fukushima, Carcinogenicity and chronic toxicity of hydrazine monohydrate in rats and mice by two-year drinking water treatment, Regul. Toxicol. Pharmacol. 76 (2016) 63–73. [49] P. Khandel, R.K. Yadaw, D.K. Soni, L. Kanwar, S.K. Shahi, Biogenesis of metal nanoparticles and their pharmacological applications: Present status and application prospects, J. Nanostructure Chem. 8 (2018) 217–254. [50] M. Sriramulu, S. Shanmugam, V.K. Ponnusamy, Agaricus bisporus mediated biosynthesis of copper nanoparticles and its biological effects: An in-vitro study, Colloids Interface Sci. Commun. 35 (2020) 100254. [51] P. Kuppusamy, M.M. Yusoff, G.P. Maniam, N. Govindan, Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications –An updated report, Saudi Pharm. J. 24 (4) (2016) 473–484. [52] M. Yang, F. Lu, T. Zhou, J. Zhao, C. Ding, A. Fakhri, V.K. Gupta, Biosynthesis of nano bimetallic Ag/Pt alloy from Crocus sativus L. extract: Biological efficacy and catalytic activity, J. Photochem. Photobiol. B Biol. 212 (2020) 112025. [53] X. Liu, G. Zhan, J. Wu, W. Li, Z. Du, J. Huang, D. Sun, Q. Li, Preparation of Integrated CuO/ZnO/OS Nanocatalysts by using acid-etched oyster shells as a support for CO2 hydrogenation, ACS Sustain. Chem. Eng. 8 (18) (2010) 7162–7173. [54] F. Lu, D. Sun, J. Huang, M. Du, F. Yang, H. Chen, Y. Hong, Q. Li, Plant-mediated synthesis of Ag-Pd alloy nanoparticles and their application as catalyst toward selective hydrogenation, ACS Sustain. Chem. Eng. 2 (5) (2014) 1212–1218. [55] J. Huang, D. Huang, Y. Liu, H. Chen, X. Jing, D. Sun, Q. Li, Rapid Au recovery from aqueous solution by a microorganism-mediated, surfactant-directed approach: Effect of surfactants and SERS of bio-Au, Chem. Eng. J. 267 (2015) 43–50. [56] X. Jing, D. Huang, H. Chen, T. Odoom-Wubah, D. Sun, J. Huang, Q. Li, Microorganism-mediated, CTAC-directed synthesis of SERS-sensitive Au nanohorns with three-dimensional nanostructures by Escherichia coli cells, J. Chem. Technol. Biotechnol. 90 (4) (2015) 678–685. [57] M. Wang, T. Kong, X. Jing, Y.K. Hung, D. Sun, L. Lin, Y. Zheng, J. Huang, Q. Li, Fabrication of Au nanowire/pichia pastoris cell composites with hexadecyltrimethylammonium bromides as a platform for SERS detection: A Microorganism-mediated approach, Ind. Eng. Chem. Res. 51 (51) (2012) 16651–16659. [58] J. Huang, G. Zhan, B. Zheng, D. Sun, F. Lu, Y. Lin, H. Chen, Z. Zheng, Y. Zheng, Q. Li, Biogenic silver nanoparticles by Cacumen Platycladi extract: Synthesis,formation mechanism, and antibacterial activity, Ind. Eng. Chem. Res. 50 (15) (2011) 9095–9106. [59] M. Shirzadi-Ahodashti, S. Mortazavi-Derazkola, M.A. Ebrahimzadeh, Biosynthesis of noble metal nanoparticles using crataegus monogyna leaf extract (CML@X-NPs, X=Ag, Au): Antibacterial and cytotoxic activities against breast and gastric cancer cell lines, Surf. Interfaces 21 (2020) 100697. [60] G. Singaravelu, J.S. Arockiamary, V.G. Kumar, K. Govindaraju, A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville, Colloids Surf. B Biointerfaces 57 (1) (2007) 97–101. [61] C. Ramteke, T. Chakrabarti, B.K. Sarangi, R.A. Pandey, Synthesis of silver nanoparticles from the aqueous extract of leaves of ocimum sanctum for enhanced antibacterial activity, J. Chem. 2013 (278925) (2013) 1–7. [62] F.A.A. Rajathi, V.R.M.S. Nambaru, Phytofabrication of nano-crystalline platinum particles by leaves of Cerbera manghas and its antibacterial efficacy, Int. J. Pharma Bio Sci. 5 (1) (2014) 619–628. [63] S. Momeni, I. Nabipour, A simple green synthesis of palladium nanoparticles with sargassum alga and their electrocatalytic activities towards hydrogen peroxide, Appl. Biochem. Biotechnol. 176 (7) (2015) 1937–1949. [64] E. Ismail, S. Khamlich, M. Dhlamini, M. Maaza, Green biosynthesis of ruthenium oxide nanoparticles on nickel foam as electrode material for supercapacitor applications, RSC Adv. 6 (90) (2016) 86843–86850. [65] K. Gopinath, V. Karthika, S. Gowri, V. Senthilkumar, S. Kumaresan, A. Arumugam, Antibacterial activity of ruthenium nanoparticles synthesized using Gloriosa superba L. leaf extract, J. Nanostructure Chem. 4 (83) (2014) 1–6. [66] J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, C. Chen, Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf, Nanotechnology 18 (10) (2007) 1–11. [67] S. babu Maddinedi, B.K. Mandal, S. Ranjan, N. Dasgupta, Diastase assisted green synthesis of size-controllable gold nanoparticles, RSC Adv., 5 (34) 26727–26733. [68] A. Mohammed Fayaz, M. Girilal, R. Venkatesan, P.T. Kalaichelvan, Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption, Colloids Surfaces B Biointerfaces 88 (1) (2011) 287–291. [69] N.K.R. Bogireddy, U. Pal, L.M. Gomez, V. Agarwal, Size controlled green synthesis of gold nanoparticles using Coffea arabica seed extract and their catalytic performance in 4-nitrophenol reduction, RSC Adv. 8 (44) (2018) 24819–24826. [70] M.N. Chen, C.F. Chan, S.L. Huang, Y.S. Lin, Green biosynthesis of gold nanoparticles using Chenopodium formosanum shell extract and analysis of the particles’ antibacterial properties, J. Sci. Food Agric. 99 (2019) 3693–3702. [71] S.A. Wadhwani, U.U. Shedbalkar, R. Singh, P. Vashisth, V. Pruthi, B.A. Chopade, Kinetics of synthesis of gold nanoparticles by Acinetobacter sp. SW30 isolated from environment, Indian J. Microbiol. 56 (4) (2016) 439–444. [72] E.M. Bakir, N.S. Younis, M.E. Mohamed, N.A. El Semary, Cyanobacteria as nanogold factories: Chemical and anti-myocardial infarction properties of gold nanoparticles synthesized by lyngbya majuscula, Mar. Drugs. 16 (6) (2018) 1–21. [73] R.M. Tripathi, B.R. Shrivastav, A. Shrivastav, Antibacterial and catalytic activity of biogenic gold nanoparticles synthesised by Trichoderma harzianum, IET Nanobiotechnol. 12 (4) (2018) 509–513. [74] D. Parial, R. Pal, Green synthesis of gold nanoparticles using Cyanobacteria and their characterization, Indian J. Appl. Res. 4 (1) (2011) 69–72. [75] H. Yang, M. Du, T. Odoom-Wubah, J. Wang, D. Sun, J. Huang, Q. Li, Microorganism-mediated, CTAB-directed synthesis of hierarchically branched Au-nanowire/Escherichia coli nanocomposites with strong nearinfrared absorbance, J. Chem. Technol. Biotechnol. 89 (9) (2014) 1410–1418. [76] X. Jiang, D. Sun, G. Zhang, N. He, H. Liu, J. Huang, T. Odoom-Wubah, Q. Li, Investigation of active biomolecules involved in the nucleation and growth of gold nanoparticles by Artocarpus heterophyllus Lam leaf extract, J. Nanoparticle Res. 15 (1741) (2013) 1–11. [77] C. Li, K.L. Shuford, M. Chen, E.J. Lee, S.O. Cho, A facile polyol route to uniform gold octahedra with tailorable size and their optical properties, ACS Nano. 2 (9) (2008) 1760–1769. [78] Y. Zheng, G. Feng, T. Shang, W. Wu, J. Huang, D. Sun, Y. Wang, Q. Li, Separation of biosynthesized gold nanoparticles by density gradient centrifugation, Sep. Sci. Technol. 52 (5) (2017) 951–957. [79] M. Fu, Q. Li, D. Sun, Y. Lu, N. He, X. Deng, H. Wang, J. Huang, Rapid preparation process of silver nanoparticles by bioreduction and their characterizations, Chinese J. Chem. Eng. 14 (1) (2006) 114–117. [80] Z.Y. Huang, G. Mills, B. Hajek, Spontaneous formation of silver particles in basic 2-propanol, J. Phys. Chem. 97 (44) (1993) 11542–11550. [81] J. Huang, L. Lin, Q. Li, D. Sun, Y. Wang, Y. Lu, N. He, K. Yang, X. Yang, H. Wang, W. Wang, W. Lin, Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried cinnamomum camphora leaf in tubular microreactors, Ind. Eng. Chem. Res. 47 (16) (2008) 6081–6090. [82] L. Lin, W. Wang, J. Huang, Q. Li, D. Sun, X. Yang, H. Wang, N. He, Y. Wang, Nature factory of silver nanowires: Plant-mediated synthesis using broth of Cassia fistula leaf, Chem. Eng. J. 162 (2) (2010) 852–858. [83] K.B. Narayanan, N. Sakthivel, Biosynthesis of silver nanoparticles by phytopathogen Xanthomonas oryzae pv. Oryzae strain BXO8, J. Microbiol. Biotechnol. 23 (9) (2013) 1287–1292. [84] X.Z. Li, H. Nikaido, K.E. Williams, Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins, J. Bacteriol. 179 (19) (1997) 6127–6132. [85] A. Syed, S. Saraswati, G.C. Kundu, A. Ahmad, Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines, Spectrochim. Acta -Part A Mol. Biomol. Spectrosc. 114 (2013) 144–147. [86] C. Wang, Y.J. Kim, P. Singh, R. Mathiyalagan, Y. Jin, D.C. Yang, Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity, Artif. Cells, Nanomedicine Biotechnol. 44 (4) (2016) 1127–1132. [87] C. Dong, C. Cao, X. Zhang, Y. Zhan, X. Wang, X. Yang, K. Zhou, X. Xiao, B. Yuan, Wolfberry fruit (Lycium barbarum) extract mediated novel route for the green synthesis of silver nanoparticles, Optik 132 (2017) 162–170. [88] Y. Ren, H. Yang, T. Wang, C. Wang, Bio-synthesis of silver nanoparticles with antibacterial activity, Mater. Chem. Phys. 235 (2019) 121746. [89] V. Sivakumar, Biosynthesis of Silver Nanoparticles by using marine bacteria Vibrio alginolyticus, Int. Res. J. Pharm. Biosci. 1 (1) (2014) 19–23. [90] J.Y. Song, E.Y. Kwon, B.S. Kim, Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract, Bioprocess Biosyst. Eng. 33 (2010) 159–164. [91] B. Zheng, T. Kong, X. Jing, T. Odoom-Wubah, X. Li, D. Sun, F. Lu, Y. Zheng, J. Huang, Q. Li, Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism, J. Colloid Interface Sci. 396 (2010) 138–145. [92] X. Lin, M. Wu, D. Wu, S. Kuga, T. Endo, Y. Huang, Platinum nanoparticles using wood nanomaterials: Eco-friendly synthesis, shape control and catalytic activity for p-nitrophenol reduction, Green Chem. 13 (2011) 283–287. [93] F. Coccia, L. Tonucci, D. Bosco, M. Bressan, N. D’Alessandro, One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions, Green Chem. 14 (2012) 1073–1078. [94] C. Soundarrajan, A. Sankari, P. Dhandapani, S. Maruthamuthu, S. Ravichandran, G. Sozhan, N. Palaniswamy, Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications, Bioprocess Biosyst. Eng. 35 (2012) 827–833. [95] A. Thirumurugan, P. Aswitha, C. Kiruthika, S. Nagarajan, A.N. Christy, Green synthesis of platinum nanoparticles using Azadirachta indica -An eco-friendly approach, Mater. Lett. 170 (2016) 175–178. [96] C.T. Hou, J.F. Shaw, Biocatalysis and agricultural biotechnology, CRC Press, USA, 2019. [97] Y. Zhou, W. Lin, J. Huang, W. Wang, Y. Gao, L. Lin, Q. Li, L. Lin, M. Du, Biosynthesis of gold nanoparticles by foliar broths: Roles of biocompounds and other attributes of the extracts, Nanoscale Res. Lett. 5 (8) (2010) 1351–1359. [98] M. Sathishkumar, K. Sneha, Y. Yun, Palladium nanocrystal synthesis using Curcuma longa tuber extract, Int. J. Mater. Sci. 4 (1) (2009) 11–17. [99] M. Sathishkumar, K. Sneha, I.S. Kwak, J. Mao, S.J. Tripathy, Y.S. Yun, Phytocrystallization of palladium through reduction process using Cinnamom zeylanicum bark extract, J. Hazard. Mater. 171 (1–3) (2009) 400–404. [100] X. Yang, Q. Li, H. Wang, J. Huang, L. Lin, W. Wang, D. Sun, Y. Su, J.B. Opiyo, L. Hong, Y. Wang, N. He, L. Jia, Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf, J. Nanoparticle Res. 12 (2010) 1589–1598. [101] H.K. Yeon, Y. Nakano, Adsorption mechanism of palladium by redox within condensed-tannin gel, Water Res. 39 (7) (2005) 1324–1330. [102] R. Narayanan, M.A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability, J. Phys. Chem. B 109 (26) (2005) 12663–12676. [103] H. Chen, D. Huang, L. Lin, T. Odoom-Wubah, J. Huang, D. Sun, Q. Li, Facile fabrication of Pd nanoparticle/Pichia pastoris catalysts through adsorption–reduction method: A study into effect of chemical pretreatment, J. Colloid Interface Sci. 433 (2014) 204–210. [104] M. Khan, M. Khan, M. Kuniyil, S.F. Adil, A. Al-Warthan, H.Z. Alkhathlan, W. Tremel, M.N. Tahir, M.R.H. Siddiqui, Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction, Dalt. Trans. 43 (2014) 9026–9031. [105] T. Odoom-Wubah, M. Du, W.B. Osei, D. Sun, J. Huang, Q. Li, Facile synthesis of porous Pd nanoflowers with excellent catalytic activity towards CO oxidation, Chin. J. Chem. Eng. 23 (11) (2014) 1907–1915. [106] K. Anand, C. Tiloke, A. Phulukdaree, B. Ranjan, A. Chuturgoon, S. Singh, R.M. Gengan, Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties, J. Photochem. Photobiol. B Biol. 165 (2016) 87–95. [107] M. Nasrollahzadeh, S. Mohammad Sajadi, Pd nanoparticles synthesized in situ with the use of Euphorbia granulate leaf extract: Catalytic properties of the resulting particles, J. Colloid Interface Sci. 462 (2016) 243–251. [108] Y. Xu, D. Ma, J. Yu, X. Jiang, J. Huang, D. Sun, Plant-mediated synthesis of Pd catalysts toward selective hydrogenation of 1,3-butadiene: The effect of halide ions, Ind. Eng. Chem. Res. 56 (38) (2017) 10623–10630. [109] M. Hazarika, D. Borah, P. Bora, A.R. Silva, P. Das, Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent, PLoS One (2017) 1–19. [110] V. Raji, M. Chakraborty, P. Parikh, Synthesis of starch-stabilized silver nanoparticles and their antimicrobial activity, Part. Sci. Technol. -Part. SCI Technol. 30 (6) (2012) 565–577. [111] M.Y.S. Ali, V. Anuradha, R. Abishek, N. Yogananth, H. Sheeba, In vitro anticancer activity of green synthesis ruthenium nanoparticle from Dictyota dichotoma marine algae, NanoWorld J. 3 (4) (2017) 66–71. [112] G. Sathiyanarayanan, V. Vignesh, G. Saibaba, A. Vinothkanna, K. Dineshkumar, M.B. Viswanathan, J. Selvin, Synthesis of carbohydrate polymer encrusted gold nanoparticles using bacterial exopolysaccharide: A novel and greener approach, RSC Adv. 4 (43) (2014) 22817–22827. [113] J.N. Payne, H.K. Waghwani, M.G. Connor, W. Hamilton, S. Tockstein, H. Moolani, F. Chavda, V. Badwaik, M.B. Lawrenz, R. Dakshinamurthy, Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity, Front. Microbiol. 7 (607) (2016) 1–10. [114] Y.K. Mohanta, S.K. Panda, A.K. Bastia, T.K. Mohanta, Biosynthesis of silver nanoparticles from Protium serratum and investigation of their potential impacts on food safety and control, Front. Microbiol. 8 (626) (2017) 1–10. [115] Q. Sun, X. Cai, J. Li, M. Zheng, Z. Chen, C.P. Yu, Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity, Colloids Surf. A Physicochem. Eng. Asp. 444 (2014)226–231. [116] Y. Ren, H. Yang, T. Wang, C. Wang, Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract, Phys. Lett. Sect. A Gen. At. Solid State Phys. 380 (45) (2016) 3773–3777. [117] M. Dinesh, S.M. Roopan, C.I. Selvaraj, P. Arunachalam, Phyllanthus emblica seed extract mediated synthesis of PdNPs against antibacterial, heamolytic and cytotoxic studies, J. Photochem. Photobiol. B Biol. 167 (2017) 64–71. [118] V. Manikandan, P. Velmurugan, J.H. Park, N. Lovanh, S.K. Seo, P. Jayanthi, Y.J. Park, M. Cho, B.T. Oh, Synthesis and antimicrobial activity of palladium nanoparticles from Prunus yedoensis leaf extract, Mater. Lett. 185 (2016) 335–338. [119] A. Arya, K. Gupta, T.S. Chundawat, In vitro antimicrobial and antioxidant activity of biogenically synthesized palladium and platinum nanoparticles using Botryococcus braunii, Turkish J. Pharm. Sci. 17 (3) (2020) 299–306. [120] T.O.C.R. Team, Special Report: Platinum and Palladium: More Precious than Silver and Gold, Outsider Club, 2020 [2020-10-26] https://www.outsiderclub.com/report/platinum-and-palladium-more-precious-thansilver-and-gold/935. [121] A.J. Kora, L. Rastogi, Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst, Arab. J. Chem. 11 (7) (2018) 1097–1106. [122] S. Naraginti, P.L. Kumari, R.K. Das, A. Sivakumar, S.H. Patil, V.V. Andhalkar, Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats, Mater. Sci. Eng. C 62 (2016) 293–300. [123] T. Shanmugasundaram, M. Radhakrishnan, V. Gopikrishnan, K. Kadirvelu, R. Balagurunathan, In vitro antimicrobial and in vivo wound healing effect of actinobacterially synthesised nanoparticles of silver, gold and their alloy, RSC Adv. 7 (81) (2017) 51729–51743. [124] G. Muhammad, M.A. Hussain, M. Amin, S.Z. Hussain, I. Hussain, S.N. Abbas Bukhari, M. Naeem-Ul-Hassan, Glucuronoxylan-mediated silver nanoparticles: Green synthesis, antimicrobial and wound healing applications, RSC Adv. 7 (68) (2017) 42900–42908. [125] S. Garg, A. Chandra, A. Mazumder, R. Mazumder, Green synthesis of silver nanoparticles using Arnebia nobilis root extract and wound healing potential of its hydrogel, Asian J. Pharm. 8 (2) (2014) 95–101. [126] L. Wen, P. Zeng, L. Zhang, W. Huang, H. Wang, G. Chen, Symbiosis theorydirected green synthesis of silver nanoparticles and their application in infected wound healing, Int. J. Nanomedicine 11 (2016) 2757–2767. [127] V. Ramesh, A. Armash, An in-vitro studies on green synthesis of gold nanoparticles against pathogens and cancer cells, Int. J. Pharmacol. Res. 5 (10) (2015) 250–256. [128] A. Rajan, A.R. Rajan, D. Philip, Elettaria cardamomum seed mediated rapid synthesis of gold nanoparticles and its biological activities, OpenNano 2 (2017) 1–8. [129] H. Çiftçi, M. Türk, U. Tamer, S. Karahan, Y. Menemen, Silver nanoparticles: Cytotoxic, apoptotic, and necrotic effects on MCF-7 cells, Turkish J. Biol. 37 (5) (2013) 573–581. [130] C. Ganesh Kumar, Y. Poornachandra, S.K. Mamidyala, Green synthesis of bacterial gold nanoparticles conjugated to resveratrol as delivery vehicles, Colloids Surf. B Biointerfaces 123 (2014) 311–317. [131] L. Kou, J. Sun, Y. Zhai, Z. He, The endocytosis and intracellular fate of nanomedicines: Implication for rational design, Asian J. Pharm. Sci. 8 (1) (2013) 1–10. [132] E.S. Al-Sheddi, N.N. Farshori, M.M. Al-Oqail, S.M. Al-Massarani, Q. Saquib, R. Wahab, J. Musarrat, A.A. Al-Khedhairy, M.A. Siddiqui, Anticancer potential of green synthesized silver nanoparticles using extract of nepeta deflersiana against human cervical cancer cells (HeLA), Bioinorg. Chem. Appl. 2018 (9390784) (2018) 1–12. [133] B. Moldovan, V. Sincari, M. Perde-Schrepler, L. David, Biosynthesis of silver nanoparticles using Ligustrum ovalifolium fruits and their cytotoxic effects, Nanomaterials 8 (627) (2018) 1–12. [134] G. Sathishkumar, C. Gobinath, A. Wilson, S. Sivaramakrishnan, Dendrophthoe falcata (L.f) Ettingsh (Neem mistletoe): A potent bioresource to fabricate silver nanoparticles for anticancer effect against human breast cancer cells (MCF-7), Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128 (2014) 285–290. [135] C. Greulich, J. Diendorf, T. Simon, G. Eggeler, M. Epple, M. Köller, Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells, Acta Biomater. 7 (1) (2011) 347–354. [136] N.S. Al-Radadi, Green synthesis of platinum nanoparticles using Saudi’s Dates extract and their usage on the cancer cell treatment, Arab. J. Chem. 12 (3) (2019) 330–349. [137] S.S. Rokade, K.A. Joshi, K. Mahajan, S. Patil, G. Tomar, D.S. Dubal, V.S. Parihar, R. Kitture, J.R. Bellare, S. Ghosh, Gloriosa superba mediated synthesis of platinum and palladium nanoparticles for induction of apoptosis in breast cancer, Bioinorg. Chem. Appl. 2018 (4924186) (2018) 1–9. [138] C. Petrarca, E. Clemente, L. Di Giampaolo, R. Mariani-Costantini, K. Leopold, R. Schindl, L.V. Lotti, R. Mangifesta, E. Sabbioni, Q. Niu, G. Bernardini, M. Di Gioacchino, Palladium nanoparticles induce disturbances in cell cycle entry and progression of peripheral blood mononuclear cells: Paramount role of ions, J. Immunol. Res. 2014 (295092) (2014) 1–8. [139] S. Azizi, M.M. Shahri, H.S. Rahman, R.A. Rahim, A. Rasedee, R. Mohamad, Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis) extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4) cell line, Int. J. Nanomed. 14 (12) (2017) 8841–8853. [140] K. Shanthi, V. Sreevani, K. Vimala, S. Kannan, Cytotoxic effect of palladium nanoparticles synthesized from Syzygium aromaticum aqueous extracts and induction of apoptosis in cervical carcinoma, Proc. Natl. Acad. Sci. India Sect. B -Biol. Sci. 87 (2017) 1101–1112. [141] S. Wang, X. Meng, A. Das, T. Li, Y. Song, T. Cao, X. Zhu, M. Zhu, R. Jin, A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25-x nanoclusters: The 13th silver atom matters, Angew. Chemie -Int. Ed. 53 (9) (2014) 2376–2380. [142] J. Wang, G. Zhang, Q. Li, H. Jiang, C. Liu, C. Amatore, X. Wang, In vivo self-bioimaging of tumors through in situ biosynthesized fluorescent gold nanoclusters, Sci. Rep. 3 (1157) (2013) 1–6. [143] G.P. Bienert, J.K. Schjoerring, T.P. Jahn, Membrane transport of hydrogen peroxide, Biochim. Biophys. Acta -Biomembr. 1758 (8) (2006) 993–1004. [144] D. Chen, C. Zhao, J. Ye, Q. Li, X. Liu, M. Su, H. Jiang, C. Amatore, M. Selke, X. Wang, In situ biosynthesis of fluorescent platinum nanoclusters: Toward selfbioimaging-guided cancer theranostics, ACS Appl. Mater. Interfaces 7 (32) (2015) 18163–18169. [145] W. Zhang, J. Ye, Y. Zhang, Q. Li, X. Dong, H. Jiang, X. Wang, One-step facile synthesis of fluorescent gold nanoclusters for rapid bio-imaging of cancer cells and small animals, RSC Adv. 5 (78) (2015) 63821–63826. [146] S. Mukherjee, D. Chowdhury, R. Kotcherlakota, S. Patra, B. Vinothkumar, M.P. Bhadra, B. Sreedhar, C.R. Patra, Potential theranostics application of biosynthesized silver nanoparticles (4-in-1 system), Theranostics 4 (3) (2014) 316–335. [147] R. Kotcherlakota, S. Nimushakavi, A. Roy, H.C. Yadavalli, S. Mukherjee, S. Haque, C.R. Patra, Biosynthesized gold nanoparticles. In vivo study of nearinfrared fluorescence (NIR)-based bio-imaging and cell labeling applications, ACS Biomater. Sci. Eng. 5 (10) (2019) 5439–5452. [148] Y. Peng, P. Wang, L. Luo, L. Liu, F. Wang, Green synthesis of fluorescent palladium nanoclusters, Materials 11 (191) (2018) 1–10. |
[1] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene[J]. 中国化学工程学报, 2023, 60(8): 90-98. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions[J]. 中国化学工程学报, 2023, 60(8): 108-117. |
[3] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions[J]. 中国化学工程学报, 2023, 59(7): 200-209. |
[4] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater[J]. 中国化学工程学报, 2023, 58(6): 124-136. |
[5] | Aneela Sabir, Wail Falath, Muhammad Shafiq, Nafisa Gull, Maria Wasim, Karl I. Jacob. Effective desalination and anti-biofouling performance via surface immobilized MWCNTs on RO membrane[J]. 中国化学工程学报, 2023, 56(4): 33-45. |
[6] | Fu Yang, Ruyi Wang, Shijian Zhou, Xuyu Wang, Yan Kong, Shuying Gao. Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration[J]. 中国化学工程学报, 2022, 45(5): 182-193. |
[7] | Mingxia Tian, Aili Wang, Hengbo Yin. Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films[J]. 中国化学工程学报, 2022, 44(4): 284-291. |
[8] | Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion[J]. 中国化学工程学报, 2022, 44(4): 392-401. |
[9] | Xiangzhao Hu, Junjie Sun, Wanzhen Zheng, Sixing Zheng, Yu Xie, Xiang Gao, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou. Layered bismuth oxide/bismuth sulfide supported on carrageenan derived carbon for efficient carbon dioxide electroreduction to formate[J]. 中国化学工程学报, 2022, 43(3): 116-123. |
[10] | Yixuan Gong, Jiasai Yao, Ping Wang, Zhenxing Li, Hongjun Zhou, Chunming Xu. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting[J]. 中国化学工程学报, 2022, 43(3): 282-296. |
[11] | Aisha Kanwal, Shamaila Sajjad, Sajjad Ahmed Khan Leghari, Muhammad Naeem Khan. Strong interfacial charge transfer between hausmannite manganese oxide and alumina for efficient photocatalysis[J]. 中国化学工程学报, 2021, 33(5): 147-159. |
[12] | Xiaosa Xu, Yuqian Qiu, Jianping Wu, Baichuan Ding, Qianhui Liu, Guangshen Jiang, Qiongqiong Lu, Jiangan Wang, Fei Xu, Hongqiang Wang. Porous nitrogen-enriched hollow carbon nanofibers as freestanding electrode for enhanced lithium storage[J]. 中国化学工程学报, 2021, 32(4): 416-422. |
[13] | Trung Thanh Nguyen, Vu Anh Khoa Tran, Le Ba Tran, Phuoc Toan Phan, Minh Tan Nguyen, Long Giang Bach, Surapol Padungthon, Cong Khiem Ta, Nhat Huy Nguyen. Synthesis of cation exchange resin-supported iron and magnesium oxides/hydroxides composite for nitrate removal in water[J]. 中国化学工程学报, 2021, 32(4): 378-384. |
[14] | Xueyi Guo, Chenlin Yang, Jinxiu Chen, Qinghua Tian, Hongmei Zhang, Guoyong Huang. Facile synthesis of spinel LiNi0.5Mn1.5O4 as 5.0 V-class high-voltage cathode materials for Li-ion batteries[J]. 中国化学工程学报, 2021, 39(11): 247-254. |
[15] | Abdullah A. Basaleh, Muhammad H. Al-Malack, Tawfik A. Saleh. Polyamide-baghouse dust nanocomposite for removal of methylene blue and metals: Characterization, kinetic, thermodynamic and regeneration[J]. 中国化学工程学报, 2021, 39(11): 112-125. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||