[1] L.L. Zhang, M.X. Zhou, A.Q. Wang, T. Zhang, Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms, Chem. Rev. 120(2) (2020) 683–733. [2] Q.F. Wu, B. Zhang, C. Zhang, X.C. Meng, X. Su, S. Jiang, R.H. Shi, Y. Li, W.W. Lin, M. Arai, H.Y. Cheng, F.Y. Zhao, Significance of surface oxygen-containing groups and heteroatom P species in switching the selectivity of Pt/C catalyst in hydrogenation of 3-nitrostyrene, J. Catal. 364(2018) 297–307. [3] P. Serna, A. Corma, Transforming nano metal nonselective particulates into chemoselective catalysts for hydrogenation of substituted nitrobenzenes, ACS Catal. 5(12) (2015) 7114–7121. [4] T. Ishida, T. Murayama, A. Taketoshi, M. Haruta, Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes, Chem. Rev. 120(2) (2020) 464–525. [5] J. Su, J.S. Chen, Synthetic porous materials applied in hydrogenation reactions, Micropor. Mesopor. Mater. 237(2017) 246–259. [6] Q.N. Wang, L. Shi, A.H. Lu, Cover picture: highly selective copper catalyst supported on mesoporous carbon for the dehydrogenation of ethanol to acetaldehyde (ChemCatChem 18/2015), ChemCatChem 7(18) (2015) 2721. [7] M. Sankar, Q. He, R.V. Engel, M.A. Sainna, A.J. Logsdail, A. Roldan, D.J. Willock, N. Agarwal, C.J. Kiely, G.J. Hutchings, Role of the support in gold-containing nanoparticles as heterogeneous catalysts, Chem. Rev. 120(8) (2020) 3890–3938. [8] R. Biriaei, B. Nohair, S. Kaliaguine, A facile route to synthesize mesoporous ZSM-5 with hexagonal arrays using P123 triblock copolymer, Micropor. Mesopor. Mater. 298(2020) 110067. [9] Z.H. Zhang, X. Zhao, G. Wang, J.L. Xu, M.K. Lu, Y.Q. Tang, W.Z. Fu, X.Z. Duan, G. Qian, D. Chen, X.G. Zhou, Uncalcined TS-2 immobilized Au nanoparticles as a bifunctional catalyst to boost direct propylene epoxidation with H2 and O2, AIChE J. 66(2) (2020) 16815. [10] Y.Y. Cui, B. Wang, C. Wen, X. Chen, W.L. Dai, Investigation of activated-carbonsupported copper catalysts with unique catalytic performance in the hydrogenation of dimethyl oxalate to methyl glycolate, ChemCatChem 8(3) (2016) 527–531. [11] R. Rinaldi, F. Schüth, Design of solid catalysts for the conversion of biomass, Energy Environ. Sci. 2(6) (2009) 610. [12] M. Liu, P. Mostaghimi, Reactive transport modelling in dual porosity media, Chem. Eng. Sci. 190(2018) 436–442. [13] L. Peng, C.T. Hung, S.W. Wang, X.M. Zhang, X.H. Zhu, Z.W. Zhao, C.Y. Wang, Y. Tang, W. Li, D.Y. Zhao, Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures, J. Am. Chem. Soc. 141(17) (2019) 7073–7080. [14] B. Zhang, B. Chen, M. Douthwaite, Q. Liu, C. Zhang, Q.F. Wu, R.H. Shi, P.X. Wu, F. Y. Zhao, G. Hutchings, Macroporous–mesoporous carbon supported Ni catalysts for the conversion of cellulose to polyols, Green Chem. 20(15) (2018) 3634–3642. [15] M.R. Benzigar, S.N. Talapaneni, S. Joseph, K. Ramadass, G. Singh, J. Scaranto, U. Ravon, K. Al-Bahily, A. Vinu, Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications, Chem. Soc. Rev. 47(8) (2018) 2680–2721. [16] L.C. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles, Chem. Rev. 118(10) (2018) 4981–5079. [17] T. Ishida, H. Koga, M. Okumura, M. Haruta, Advances in gold catalysis and understanding the catalytic mechanism, Chem. Rec. 16(5) (2016) 2278–2293. [18] J. Sá, A. Goguet, S.F. Taylor, R. Tiruvalam, C.J. Kiely, M. Nachtegaal, G.J. Hutchings, C. Hardacre, Influence of methyl halide treatment on gold nanoparticles supported on activated carbon, Angew. Chem. Int. Ed. Engl. 50(38) (2011) 8912–8916. [19] R. Radhakrishnan, S. Thiripuranthagan, A. Devarajan, S. Kumaravel, E. Erusappan, K. Kannan, Oxidative esterification of furfural by Au nanoparticles supported CMK-3 mesoporous catalysts, Appl. Catal. A: Gen. 545(2017) 33–43. [20] P.R. Murthy, P. Selvam, The enhanced catalytic performance and stability of ordered mesoporous carbon supported nano-gold with high structural integrity for glycerol oxidation, Chem. Rec. 19(9) (2019) 1913–1925. [21] R.Y. Zhong, X.H. Yan, Z.K. Gao, R.J. Zhang, B.Q. Xu, Stabilizer substitution and its effect on the hydrogenation catalysis by Au nanoparticles from colloidal synthesis, Catal. Sci. Technol. 3(11) (2013) 3013. [22] B. Donoeva, P.E. De Jongh, Cover feature: colloidal Au catalyst preparation: selective removal of polyvinylpyrrolidone from active Au sites (ChemCatChem 5/2018), ChemCatChem 10(5) (2018) 860. [23] X.J. Zhu, Q.S. Guo, Y.F. Sun, S.J. Chen, J.Q. Wang, M.M. Wu, W.Z. Fu, Y.Q. Tang, X. Z. Duan, D. Chen, Y. Wan, Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity, Nat. Commun. 10(1) (2019) 1428. [24] W.J. Shen, Experimentally measurable surface d charge as a descriptor for catalytic activity, Acta Phys.-Chimica Sin. 35(11) (2019) 1173–1174. [25] Y. Sun, Y. Cao, L. Wang, X. Mu, Q. Zhao, R. Si, X. Zhu, S. Chen, B. Zhang, W.Y. Chen, Gold catalysts containing interstitial carbon atoms boost hydrogenation activity, Nat. Commun. 11(1) (2020) 4600. [26] S.C. Warren, L.C. Messina, L.S. Slaughter, M. Kamperman, Q. Zhou, S.M. Gruner, F.J. DiSalvo, U. Wiesner, Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly, Science 320(5884) (2008) 1748–1752. [27] M.C. Orilall, F. Matsumoto, Q. Zhou, H. Sai, H.D. Abruña, F.J. DiSalvo, U. Wiesner, One-pot synthesis of platinum-based nanoparticles incorporated into mesoporous niobium oxide-carbon composites for fuel cell electrodes, J. Am. Chem. Soc. 131(26) (2009) 9389–9395. [28] J. Shim, J. Lee, Y. Ye, J. Hwang, S.K. Kim, T.H. Lim, U. Wiesner, J. Lee, One-pot synthesis of intermetallic electrocatalysts in ordered, large-pore mesoporous carbon/silica toward formic acid oxidation, ACS Nano 6(8) (2012) 6870–6881. [29] H. Li, H. Shen, C. Pei, S.J. Chen, Y. Wan, A self-assembly process for the immobilization of N-modified Au nanoparticles in ordered mesoporous carbon with large pores, ChemCatChem 11(16) (2019) 3882–3891. [30] K. Matyjaszewski, Atom transfer radical polymerization (ATRP): current status and future perspectives, Macromolecules 45(10) (2012) 4015–4039. [31] S. Wang, J. Wang, Q.F. Zhao, D.D. Li, J.Q. Wang, M. Cho, H. Cho, O. Terasaki, S.J. Chen, Y. Wan, Highly active heterogeneous 3 nm gold nanoparticles on mesoporous carbon as catalysts for low-temperature selective oxidation and reduction in water, ACS Catal. 5(2) (2015) 797–802. [32] H.B. Fu, L. Zhang, Y. Wang, S.J. Chen, Y. Wan, Thermally reduced gold nanocatalysts prepared by the carbonization of ordered mesoporous carbon as a heterogeneous catalyst for the selective reduction of aromatic nitro compounds, J. Catal. 344(2016) 313–324. [33] C. Della Pina, E. Falletta, M. Rossi, A. Sacco, Selective deactivation of gold catalyst, J. Catal. 263(1) (2009) 92–97. [34] J.Y. Zhang, Y.H. Deng, J. Wei, Z.K. Sun, D. Gu, H. Bongard, C. Liu, H.H. Wu, B. Tu, F. Schüth, D.Y. Zhao, Design of amphiphilic ABC triblock copolymer for templating synthesis of large-pore ordered mesoporous carbons with tunable pore wall thickness, Chem. Mater. 21(17) (2009) 3996–4005. [35] A.S. Manchanda, M. Kruk, Synthesis of large-pore face-centered-cubic periodic mesoporous organosilicas with unsaturated bridging groups, Micropor. Mesopor. Mater. 222(2016) 153–159. [36] X. Yan, X. Wang, Y. Tang, G. Ma, S. Zou, R. Li, X. Peng, S. Dai, J. Fan, Ordered, extra-large mesopores with highly loaded gold nanoparticles: a new sinteringand coking-resistant catalyst system, Chem. Commun. (Camb.) 49(66) (2013) 7274–7276. [37] L. Prati, A. Villa, Gold catalysis: preparation, characterization, and applications, CRC Press, Boca Raton, 2016. [38] S. Wang, Q. Zhao, H. Wei, J.Q. Wang, M. Cho, H.S. Cho, O. Terasaki, Y. Wan, Aggregation-free gold nanoparticles in ordered mesoporous carbons: toward highly active and stable heterogeneous catalysts, J. Am. Chem. Soc. 135(32) (2013) 11849–11860. [39] L. Su, F.Z. Zhang, L.J. Wang, X.S. Fang, W. Jiang, J.P. Yang, Flexible electrocatalysts: interfacial-assembly of iron nanoparticles for nitrate reduction, Chem. Commun. 57(55) (2021) 6740–6743. [40] G.J. Zhu, R. Guo, W. Luo, H.K. Liu, W. Jiang, S.X. Dou, J.P. Yang, Boron dopinginduced interconnected assembly approach for mesoporous silicon oxycarbide architecture, Natl. Sci. Rev. 8(6) (2021) nwaa152. [41] H. Xu, J. Wu, W. Luo, Q. Li, W.X. Zhang, J.P. Yang, Dendritic cell-inspired designed architectures toward highly efficient electrocatalysts for nitrate reduction reaction, Small 16(30) (2020) e2001775. [42] Y.D. Zou, X.R. Zhou, J.H. Ma, X. Yang, Y.H. Deng, Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: assembly engineering and applications, Chem. Soc. Rev. 49(4) (2020) 1173–1208. [43] W.C. Zhan, Q. He, X.F. Liu, Y.L. Guo, Y.Q. Wang, L. Wang, Y. Guo, A.Y. Borisevich, J.S. Zhang, G.Z. Lu, S. Dai, A sacrificial coating strategy toward enhancement of metal-support interaction for ultrastable Au nanocatalysts, J. Am. Chem. Soc. 138(49) (2016) 16130–16139. [44] Z.Z. Jiang, Z.B. Wang, D.M. Gu, E.S. Smotkin, Carbon riveted Pt/C catalyst with high stability prepared by in situ carbonized glucose, Chem. Commun. (Camb.) 46(37) (2010) 6998–7000. [45] S. Fountoulaki, V. Daikopoulou, P.L. Gkizis, I. Tamiolakis, G.S. Armatas, I.N. Lykakis, Mechanistic studies of the reduction of nitroarenes by NaBH4 or hydrosilanes catalyzed by supported gold nanoparticles, ACS Catal. 4(10) (2014) 3504–3511. [46] X.R. Zhao, Y.Q. Cao, L.L. Duan, R.O. Yang, Z. Jiang, C. Tian, S.J. Chen, X.Z. Duan, D. Chen, Y. Wan, Unleash electron transfer in C-H functionalization by mesoporous carbon-supported palladium interstitial catalysts, Natl. Sci. Rev. 8(4) (2021) nwaa126. [47] M.A. Isaacs, N. Robinson, B. Barbero, L.J. Durndell, J.C. Manayil, C.M.A. Parlett, C. D’Agostino, K. Wilson, A.F. Lee, Unravelling mass transport in hierarchically porous catalysts, J. Mater. Chem. A 7(19) (2019) 11814–11825. [48] S.J. Chen, H.B. Fu, L. Zhang, Y. Wan, Nanospherical mesoporous carbonsupported gold as an efficient heterogeneous catalyst in the elimination of mass transport limitations, Appl. Catal. B: Environ. 248(2019) 22–30. |