[1] F.L. Jin, X. Li, S.J. Park, Synthesis and application of epoxy resins: A review, J. Ind. Eng. Chem. 29 (2015) 1–11. [2] X.W. Li, Q.Y. Yu, X. Chen, Q.X. Zhang, Microstructures and electrochemical behaviors of casting magnesium alloys with enhanced compression strengths and decomposition rates, J. Magnes. Alloys (2021) https://doi.org/10.1016/j.jma.2021.07.018 [3] X.W. Li, J.S. Liang, T. Shi, D.N. Yang, X.C. Chen, C.W. Zhang, Z.H. Liu, D.Z. Liu, Q.X. Zhang, Tribological behaviors of vacuum hot-pressed ceramic composites with enhanced cyclic oxidation and corrosion resistance, Ceram. Int. 46 (9) (2020) 12911–12920. [4] M. Rajaei, N.K. Kim, S. Bickerton, D. Bhattacharyya, A comparative study on effects of natural and synthesised nano-clays on the fire and mechanical properties of epoxy composites, Compos. B Eng. 165 (2019) 65–74. [5] S.Q. Huo, S. Yang, J. Wang, J.W. Cheng, Q.Q. Zhang, Y.F. Hu, G.P. Ding, Q.X. Zhang, P.G. Song, A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances, J Hazard Mater 386 (2020) 121984. [6] Q.Y. Liu, D.H. Wang, Z.K. Li, Z.F. Li, X.L. Peng, C.B. Liu, Y. Zhang, P.L. Zheng, Recent developments in the flame-retardant system of epoxy resin, Materials 13 (9) (2020) 2145. [7] C. Ma, S.L. Qiu, B. Yu, J.L. Wang, C.M. Wang, W.R. Zeng, Y. Hu, Economical and environment-friendly synthesis of a novel hyperbranched poly(aminomethylphosphine oxide-amine) as co-curing agent for simultaneous improvement of fire safety, glass transition temperature and toughness of epoxy resins, Chem. Eng. J. 322 (2017) 618–631. [8] J. Alongi, Z.D. Han, S. Bourbigot, Intumescence: Tradition versus novelty. A comprehensive review, Prog. Polym. Sci. 51 (2015) 28–73. [9] H. Kim, J.W. Park, H.J. Kim, Flame retardant nano-composites containing nano-fillers (in science and applications of tailored nanostructures), One Central Press, (2017). [10] H.L. Qin, S.M. Zhang, C.G. Zhao, G.J. Hu, M.S. Yang, Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene, Polymer 46 (19) (2005) 8386–8395. [11] M.L. Du, B.C. Guo, D.M. Jia, Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene), Eur. Polym. J. 42 (6) (2006) 1362–1369. [12] A. Kausar, I. Rafique, B. Muhammad, Significance of carbon nanotube in flame-retardant polymer/CNT composite: a review, Polym. Plast. Technol. Eng. 56 (5) (2017) 470–487. [13] B. Sang, Z.W. Li, X.H. Li, L.G. Yu, Z.J. Zhang, Graphene-based flame retardants: a review, J. Mater. Sci. 51 (18) (2016) 8271–8295. [14] S. Bourbigot, S. Duquesne, Fire retardant polymers: recent developments and opportunities, J. Mater. Chem. 17 (22) (2007) 2283. [15] M.M. Velencoso, A. Battig, J.C. Markwart, B. Schartel, F.R. Wurm, Molecular firefighting-how modern phosphorus chemistry can help solve the challenge of flame retardancy, Angew Chem Int Ed Engl 57 (33) (2018) 10450–10467. [16] S.Q. Huo, P.G. Song, B. Yu, S.Y. Ran, V.S. Chevali, L. Liu, Z.P. Fang, H. Wang, Phosphorus-containing flame retardant epoxy thermosets: recent advances and future perspectives, Prog. Polym. Sci. 114 (2021) 101366. [17] T. Liu, J. Jing, Y. Zhang, Z.P. Fang, Synthesis of a novel polyphosphate and its application with APP in flame retardant PLA, RSC Adv. 8 (8) (2018) 4483–4493. [18] A.B. Morgan, The future of flame retardant polymers–unmet needs and likely new approaches, Polym. Rev. 59 (1) (2019) 25–54. [19] X.L. Li, F.H. Zhang, R.K. Jian, Y.F. Ai, J.L. Ma, G.J. Hui, D.Y. Wang, Influence of eco-friendly calcium gluconate on the intumescent flame-retardant epoxy resin: flame retardancy, smoke suppression and mechanical properties, Compos. B Eng. 176 (2019) 107200. [20] H.Y. Ren, K.L. Qing, Y. Chen, Y.J. Lin, X. Duan, Smoke suppressant in flame retarded thermoplastic polyurethane composites: Synergistic effect and mechanism study, Nano Res. 14 (11) (2021) 3926–3934. [21] M. Rajaei, D.Y. Wang, D. Bhattacharyya, Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric composites, Compos. B Eng. 113 (2017) 381–390. [22] S.L. Qiu, C. Ma, X. Wang, X. Zhou, X.M. Feng, R.K.K. Yuen, Y. Hu, Melamine-containing polyphosphazene wrapped ammonium polyphosphate: a novel multifunctional organic-inorganic hybrid flame retardant, J Hazard Mater 344 (2018) 839–848. [23] M. Gao, S. Chen, H. Wang, Z.H. Chai, Design, preparation, and application of a novel, microencapsulated, intumescent, flame-retardant-based mimicking mussel, ACS Omega 3 (6) (2018) 6888–6894. [24] M. Kim, H. Ko, S.M. Park, Synergistic effects of amine-modified ammonium polyphosphate on curing behaviors and flame retardation properties of epoxy composites, Compos. B Eng. 170 (2019) 19–30. [25] W.T. He, P.G. Song, B. Yu, Z.P. Fang, H. Wang, Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants, Prog. Mater. Sci. 114 (2020) 100687. [26] C.J. Shuai, L. Yu, P. Feng, C.D. Gao, S.P. Peng, Interfacial reinforcement in bioceramic/biopolymer composite bone scaffold: the role of coupling agent, Colloids Surf B Biointerfaces 193 (2020) 111083. [27] F. Ahangaran, A.H. Navarchian, Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: a review, Adv. Colloid Interface Sci. 286 (2020) 102298. [28] S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—A review, Prog. Polym. Sci. 38 (8) (2013) 1232–1261. [29] H.J. Lin, H. Yan, B. Liu, L.Q. Wei, B.S. Xu, The influence of KH-550 on properties of ammonium polyphosphate and polypropylene flame retardant composites, Polym. Degrad. Stab. 96 (7) (2011) 1382–1388. [30] Y.P. Sheng, Y.C. Wu, Y. Yan, H.C. Jia, Y.Y. Qiao, B.S. Underwood, D.Y. Niu, Y.R. Kim, Development of environmentally friendly flame retardant to achieve low flammability for asphalt binder used in tunnel pavements, J. Clean. Prod. 257 (2020) 120487. [31] G.S. Liu, W.Y. Chen, J.G. Yu, A novel process to prepare ammonium polyphosphate with crystalline form II and its comparison with melamine polyphosphate, Ind. Eng. Chem. Res. 49 (23) (2010) 12148–12155. [32] Y.J. Xie, C.A.S. Hill, Z.F. Xiao, H. Militz, C. Mai, Silane coupling agents used for natural fiber/polymer composites: a review, Compos. A Appl. Sci. Manuf. 41 (7) (2010) 806–819. [33] Y. Tan, Z.B. Shao, L.X. Yu, J.W. Long, M. Qi, L. Chen, Y.Z. Wang, Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: flame retardance, curing behavior and mechanical property, Polym. Chem. 7 (17) (2016) 3003–3012. [34] L.B. Liu, Y. Xu, M.J. Xu, Z.Q. Li, Y.M. Hu, B. Li, Economical and facile synthesis of a highly efficient flame retardant for simultaneous improvement of fire retardancy, smoke suppression and moisture resistance of epoxy resins, Compos. B Eng. 167 (2019) 422–433. [35] Y. Tan, Z.B. Shao, X.F. Chen, J.W. Long, L. Chen, Y.Z. Wang, Novel multifunctional organic-inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin, ACS Appl Mater Interfaces 7 (32) (2015) 17919–17928. [36] Z.B. Shao, C. Deng, Y. Tan, L. Yu, M.J. Chen, L. Chen, Y.Z. Wang, Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene, J. Mater. Chem. A 2 (34) (2014) 13955. [37] A.P. Hinckley, A.J. Muscat, Modified organosilane monolayers with enhanced radiation stability, Langmuir 36 (15) (2020) 4116–4122. [38] M.H. Zhu, L. Liu, Z.Z. Wang, Mesoporous silica via self-assembly of nano zinc amino-tris-(methylenephosphonate) exhibiting reduced fire hazards and improved impact toughness in epoxy resin, J. Hazard. Mater. 392 (2020) 122343. [39] Z.D. Zhang, J.Y. Qin, W.C. Zhang, Y.T. Pan, D.Y. Wang, R.J. Yang, Synthesis of a novel dual layered double hydroxide hybrid nanomaterial and its application in epoxy nanocomposites, Chem. Eng. J. 381 (2020) 122777. [40] F. Fang, S.Y. Ran, Z.P. Fang, P.G. Song, H. Wang, Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water, Compos. B Eng. 165 (2019) 406–416. [41] H.F. Pan, W. Wang, Y. Pan, L. Song, Y. Hu, K.M. Liew, Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties, ACS Appl Mater Interfaces 7 (1) (2015) 101–111. [42] Y.W. Yan, L. Chen, R.K. Jian, S. Kong, Y.Z. Wang, Intumescence: an effect way to flame retardance and smoke suppression for polystryene, Polym. Degrad. Stab. 97 (8) (2012) 1423–1431. [43] Z. Li, A.J. González, V.B. Heeralal, D.Y. Wang, Covalent assembly of MCM-41 nanospheres on graphene oxide for improving fire retardancy and mechanical property of epoxy resin, Compos. B Eng. 138 (2018) 101–112. [44] L. Costes, F. Laoutid, S. Brohez, P. Dubois, Bio-based flame retardants: when nature meets fire protection, Mater. Sci. Eng. R Rep. 117 (2017) 1–25. [45] S.Q. Huo, S. Yang, J. Wang, J.W. Cheng, Q.Q. Zhang, Y.F. Hu, G.P. Ding, Q.X. Zhang, P.G. Song, H. Wang, A liquid phosphaphenanthrene-derived imidazole for improved flame retardancy and smoke suppression of epoxy resin, ACS Appl. Polym. Mater. 2 (8) (2020) 3566–3575. [46] S. Yang, S.Q. Huo, J. Wang, B. Zhang, J.S. Wang, S.Y. Ran, Z.P. Fang, P.G. Song, H. Wang, A highly fire-safe and smoke-suppressive single-component epoxy resin with switchable curing temperature and rapid curing rate, Compos. B Eng. 207 (2021) 108601. [47] J. Hong, T. Wu, H.Y. Wu, B.R. Zeng, S.N. Zeng, T. Chen, X. Wang, Z.W. Lu, C.H. Yuan, K. Balaji, D.F.S. Petri, L.Z. Dai, Nanohybrid silver nanoparticles@halloysite nanotubes coated with polyphosphazene for effectively enhancing the fire safety of epoxy resin, Chem. Eng. J. 407 (2021) 127087. [48] F. Tuinstra, J.L. Koenig, Raman spectrum of graphite, J. Chem. Phys. 53 (3) (1970) 1126–1130. [49] Z.L. Zhao, Q. Jin, N.E. Zhang, X.R. Guo, H. Yan, Preparation of a novel polysiloxane and its synergistic effect with ammonium polyphosphate on the flame retardancy of polypropylene, Polym. Degrad. Stab. 150 (2018) 73–85. [50] X.S. Li, Z.L. Zhao, Y.H. Wang, H. Yan, X.Y. Zhang, B.S. Xu, Highly efficient flame retardant, flexible, and strong adhesive intumescent coating on polypropylene using hyperbranched polyamide, Chem. Eng. J. 324 (2017) 237–250. [51] E. Desimoni, G.I. Casella, A.M. Salvi, T.R.I. Cataldi, A. Morone, XPS investigation of ultra-high-vacuum storage effects on carbon fibre surfaces, Carbon 30 (4) (1992) 527–531. [52] W.C. Zhang, X.M. Li, R.J. Yang, Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS), Polym. Degrad. Stab. 96 (10) (2011) 1821–1832. [53] W.C. Zhang, X.M. Li, H.B. Fan, R.J. Yang, Study on mechanism of phosphorus-silicon synergistic flame retardancy on epoxy resins, Polym. Degrad. Stab. 97 (11) (2012) 2241–2248. [54] M.S. Donley, D.R. Baer, T.G. Stoebe, Nitrogen 1s charge referencing for Si3N4 and related compounds, Surf. Interface Anal. 11 (6–7) (1988) 335–340. [55] N.E. Zhang, J. Zhang, H. Yan, X.R. Guo, Q. Sun, R.J. Guo, A novel organic-inorganic hybrid K-HBPE@APP performing excellent flame retardancy and smoke suppression for polypropylene, J Hazard Mater 373 (2019) 856–865. [56] S.A. Kaluzhina, I.V. Sieber, Copper passivity and its breakdown in sodium bicarbonate solutions: a scanning electron microscopy and X-ray photoelectron and auger spectroscopy study, Russ. J. Electrochem. 42 (12) (2006) 1352–1357. [57] Y.A. Guloyan, Colored glass: technological and operational characteristics (review), Glass Ceram. 72 (9–10) (2016) 353–359. [58] D.X. Liang, X.J. Zhu, P. Dai, X.Y. Lu, H.Q. Guo, H. Que, D.D. Wang, T. He, C.Z. Xu, H.M. Robin, Z.Y. Luo, X.L. Gu, Preparation of a novel lignin-based flame retardant for epoxy resin, Mater. Chem. Phys. 259 (2021) 124101. [59] X.L. Hu, Y. Wang, J.R. Yu, J. Zhu, Z.M. Hu, Synthesis of a deoxybenzoin derivative and its use as a flame retardant in poly(trimethylene terephthalate), J. Appl. Polym. Sci. 135 (8) (2018) 45904. [60] L.J. Li, Y.J. Chen, L.J. Qian, B. Xu, W. Xi, Addition flame-retardant effect of nonreactive phosphonate and expandable graphite in rigid polyurethane foams, J. Appl. Polym. Sci. 135 (10) (2018) 45960. [61] L.J. Chen, L. Song, P. Lv, G.X. Jie, Q.L. Tai, W.Y. Xing, Y. Hu, A new intumescent flame retardant containing phosphorus and nitrogen: Preparation, thermal properties and application to UV curable coating, Prog. Org. Coat. 70 (1) (2011) 59–66. [62] S.L. Qiu, X. Wang, B. Yu, X.M. Feng, X.W. Mu, R.K.K. Yuen, Y. Hu, Flame-retardant-wrapped polyphosphazene nanotubes: a novel strategy for enhancing the flame retardancy and smoke toxicity suppression of epoxy resins, J Hazard Mater 325 (2017) 327–339. [63] S.L. Qiu, W.Y. Xing, X.M. Feng, B. Yu, X.W. Mu, R.K.K. Yuen, Y. Hu, Self-standing cuprous oxide nanoparticles on silica@ polyphosphazene nanospheres: 3D nanostructure for enhancing the flame retardancy and toxic effluents elimination of epoxy resins via synergistic catalytic effect, Chem. Eng. J. 309 (2017) 802–814. [64] P. Wang, Z.S. Cai, Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: thermal stability, flame retardancy and mechanism, Polym. Degrad. Stab. 137 (2017) 138–150 |