[1] M. Besson, P. Gallezot, C. Pinel, Conversion of biomass into chemicals over metal catalysts, Chem. Rev. 114 (3) (2014) 1827–1870. [2] H.C. Ong, W.H. Chen, A. Farooq, Y.Y. Gan, K.T. Lee, V. Ashokkumar, Catalytic thermochemical conversion of biomass for biofuel production: a comprehensive review, Renew. Sustain. Energy Rev. 113 (2019) 109266. [3] D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herzing, M. Watanabe, C.J. Kiely, D.W. Knight, G.J. Hutchings, Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts, Science 311 (5759) (2006) 362–365. [4] D.M. Yun, Y. Wang, J.E. Herrera, Ethanol partial oxidation over VOx/TiO2 catalysts: the role of titania surface oxygen on vanadia reoxidation in the mars–van krevelen mechanism, ACS Catal. 8 (5) (2018) 4681–4693. [5] J.C. Védrine, I. Fechete, Heterogeneous partial oxidation catalysis on metal oxides, Comptes Rendus Chim. 19 (10) (2016) 1203–1225. [6] T. Punniyamurthy, S. Velusamy, J. Iqbal, Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen, Chem. Rev. 105 (6) (2005) 2329–2363. [7] E. Boess, D. Sureshkumar, A. Sud, C. Wirtz, C. Farès, M. Klussmann, Mechanistic studies on a Cu-catalyzed aerobic oxidative coupling reaction with N-phenyl tetrahydroisoquinoline: structure of intermediates and the role of methanol as a solvent, J. Am. Chem. Soc. 133 (21) (2011) 8106–8109. [8] Z. Guo, B. Liu, Q.H. Zhang, W.P. Deng, Y. Wang, Y.H. Yang, Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry, Chem. Soc. Rev. 43 (10) (2014) 3480–3524. [9] S.M. Ireland, H. Tye, M. Whittaker, Microwave-assisted multi-component synthesis of fused 3-aminoimidazoles, Tetrahedron Lett. 44 (23) (2003) 4369–4371. [10] M. Bollini, J.J. Casal, A.M. Bruno, Design, synthesis, and antitumor activity of new bis-aminomethylnaphthalenes, Bioorg. Med. Chem. 16 (17) (2008) 8003–8010. [11] J.W. Williams. β-Naphthaldehyde, Org. Synth. 23 (1943) 63. [12] X.Q. Gao, F. Zhang, Y. Yu, Y.H. Dou, L. Xu, G.J. Liu, Effect of Mo loading on 2-naphthaldehyde formation from vapor phase oxidation of 2-methylnaphthalene with V2O5/TiO2 catalysts, Catal. Commun. 122 (2019) 47–51. [13] Y. Yu, F.F. Li, X.H. Han, S.H. Long, S.S. Shi, L. Xu, G.J. Liu, High-performance metal oxide-modified V/TiO2 catalysts for selective oxidation of 2-methylnaphthalene to 2-naphthaldehyde: an experimental and theoretical study, Ind. Eng. Chem. Res. 60 (8) (2021) 3435–3451. [14] L.D. Ellis, J. Ballesteros-Soberanas, D.K. Schwartz, J.W. Medlin, Effects of metal oxide surface doping with phosphonic acid monolayers on alcohol dehydration activity and selectivity, Appl. Catal. A 571 (2019) 102–106. [15] X.J. Wang, X. Zhang, P. Li, K.I. Otake, Y.X. Cui, J.F. Lyu, M.D. Krzyaniak, Y.Y. Zhang, Z.Y. Li, J. Liu, C.T. Buru, T. Islamoglu, M.R. Wasielewski, Z. Li, O.K. Farha, Vanadium catalyst on isostructural transition metal, lanthanide, and actinide based metal-organic frameworks for alcohol oxidation, J. Am. Chem. Soc. 141 (20) (2019) 8306–8314. [16] Y. Ganjkhanlou, T.V.W. Janssens, P.N.R. Vennestrøm, L. Mino, M.C. Paganini, M. Signorile, S. Bordiga, G. Berlier, Location and activity of VOx species on TiO2 particles for NH3-SCR catalysis, Appl. Catal. B 278 (2020) 119337. [17] J.F. Pang, M. Yin, P.F. Wu, X.Q. Li, H.Y. Li, M.Y. Zheng, T. Zhang, Advances in catalytic dehydrogenation of ethanol to acetaldehyde, Green Chem. 23 (20) (2021) 7902–7916. [18] V.V. Kaichev, Y.A. Chesalov, A.A. Saraev, A.Y. Klyushin, A. Knop-Gericke, T.V. Andrushkevich, V.I. Bukhtiyarov, Redox mechanism for selective oxidation of ethanol over monolayer V2O5/TiO2 catalysts, J. Catal. 338 (2016) 82–93. [19] L. Artiglia, S. Agnoli, G. Granozzi, Vanadium oxide nanostructures on another oxide: the viewpoint from model catalysts studies, Coord. Chem. Rev. 301-302 (2015) 106–122. [20] W.C. Vining, J. Strunk, A.T. Bell, Investigation of the structure and activity of VOx/ZrO2/SiO2 catalysts for methanol oxidation to formaldehyde, J. Catal. 281 (2) (2011) 222–230. [21] A. Goodrow, A.T. Bell, A theoretical investigation of the selective oxidation of methanol to formaldehyde on isolated vanadate species supported on titania, J. Phys. Chem. C 112 (34) (2008) 13204–13214. [22] H.C. Liu, E. Iglesia, Selective oxidation of dimethylether to formaldehyde on small molybdenum oxide domains, J. Catal. 208 (1) (2002) 1–5. [23] A. Christodoulakis, M. Machli, A.A. Lemonidou, S. Boghosian, Molecular structure and reactivity of vanadia-based catalysts for propane oxidative dehydrogenation studied by in situ Raman spectroscopy and catalytic activity measurements, J. Catal. 222 (2) (2004) 293–306. [24] V.V. Kaichev, G.Y. Popova, Y.A. Chesalov, A.A. Saraev, D.Y. Zemlyanov, S.A. Beloshapkin, A. Knop-Gericke, R. Schlögl, T.V. Andrushkevich, V.I. Bukhtiyarov, Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2 catalyst, J. Catal. 311 (2014) 59–70. [25] F. Chandoul, A. Boukhachem, F. Hosni, H. Moussa, M.S. Fayache, M. Amlouk, R. Schneider, Change of the properties of nanostructured MoO3 thin films using gamma-ray irradiation, Ceram. Int. 44 (11) (2018) 12483–12490. [26] R. Zhu, A. Chatzidimitriou, J.Q. Bond, Influence of vanadate structure and support identity on catalytic activity in the oxidative cleavage of methyl ketones, J. Catal. 359 (2018) 171–183. [27] G.C. Bond, S.F. Tahir, ChemInform abstract: vanadium oxide monolayer catalysts. preparation, characterization, and catalytic activity, ChemInform 22 (43) (1991) 1-31. [28] C.A. Carrero, R. Schloegl, I.E. Wachs, R. Schomaecker, Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts, ACS Catal. 4 (10) (2014) 3357–3380. [29] K. Shimura, T. Fujitani, Effects of promoters on the performance of a VOx/SiO2 catalyst for the oxidation of methane to formaldehyde, Appl. Catal. A 577 (2019) 44–51. [30] E.V. Kondratenko, T. Peppel, D. Seeburg, V.A. Kondratenko, N. Kalevaru, A. Martin, S. Wohlrab, Methane conversion into different hydrocarbons or oxygenates: current status and future perspectives in catalyst development and reactor operation, Catal. Sci. Technol. 7 (2) (2017) 366–381. [31] P. Eversfield, T. Lange, M. Hunger, E. Klemm, Selective oxidation of o-xylene to phthalic anhydride on tungsten, tin, and potassium promoted VOx on TiO2 monolayer catalysts, Catal. Today 333 (2019) 120–126. [32] I.E. Wachs, S.S. Chan, C.C. Chersich, R.Y. Saleh, The interaction of V2O5 with TiO2(anatase): the active site for the oxidation of O-xylene to phthalic anhydride. Catalysis on the Energy Scene. Amsterdam: Elsevier, (1984) 275–282. [33] H.Y. Zhao, S. Bennici, J.Y. Shen, A. Auroux, Nature of surface sites of V2O5–TiO2/SO42- catalysts and reactivity in selective oxidation of methanol to dimethoxymethane, J. Catal. 272 (1) (2010) 176–189. [34] M. Gómez-Cazalilla, J.M. Mérida-Robles, A. Gurbani, E. Rodríguez-Castellón, A. Jiménez-López, Characterization and acidic properties of Al-SBA-15 materials prepared by post-synthesis alumination of a low-cost ordered mesoporous silica, J. Solid State Chem. 180 (3) (2007) 1130–1140. [35] B.M. Reddy, I. Ganesh, B. Chowdhury, Design of stable and reactive vanadium oxide catalysts supported on binary oxides, Catal. Today 49 (1–3) (1999) 115–121. [36] M.O. Guerrero-Pérez, M.C. Herrera, I. Malpartida, M.A. Larrubia, L.J. Alemany, Characterization and FT-IR study of nanostructured alumina-supported V-Mo-W-O catalysts, Catal. Today 118 (3–4) (2006) 360–365. [37] Y. Liu, X.B. Ma, S.P. Wang, J.L. Gong, The nature of surface acidity and reactivity of MoO3/SiO2 and MoO3/TiO2-SiO2 for transesterification of dimethyl oxalate with phenol: a comparative investigation, Appl. Catal. B 77 (1–2) (2007) 125–134. [38] H.L. Koh, H.K. Park, Characterization of MoO3-V2O5/Al2O3 catalysts for selective catalytic reduction of NO by NH3, J. Ind. Eng. Chem. 19 (1) (2013) 73–79. [39] S.W. Yang, E. Iglesia, A.T. Bell, Oxidative dehydrogenation of propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3: structural characterization and catalytic function, J. Phys. Chem. B 109 (18) (2005) 8987–9000. [40] M.A. Bañares, S.J. Khatib, Structure-activity relationships in alumina-supported molybdena-vanadia catalysts for propane oxidative dehydrogenation, Catal. Today 96 (4) (2004) 251–257. [41] X.A. Li, J.H. Li, Y.E. Peng, X.S. Li, K.Z. Li, J.M. Hao, Comparison of the structures and mechanism of arsenic deactivation of CeO2–MoO3 and CeO2–WO3 SCR catalysts, J. Phys. Chem. C 120 (32) (2016) 18005–18014. [42] X.M. Huang, Y.G. Li, Y.D. Xu, W.J. Shen, Kinetics of selective oxidation of dimethyl ether to formaldehyde over Al2O3-supported VOx and MoOx catalysts, Catal. Lett. 97 (3–4) (2004) 185–190. [43] W. Luo, J. Rong, W.X. Zhao, K.K. Kang, L.L. Long, X.J. Yao, Morphology and crystal-plane dependence of CeO2-TiO2 catalysts: activity and mechanism for the selective catalytic reduction of NOx with NH3, Chem. Eng. J. 444 (2022) 136488. [44] J. Kim, E.E. Kwon, J.E. Lee, S.H. Jang, J.K. Jeon, J. Song, Y.K. Park, Effect of zeolite acidity and structure on ozone oxidation of toluene using Ru-Mn loaded zeolites at ambient temperature, J. Hazard. Mater. 403 (2021) 123934. [45] J. Arfaoui, A. Ghorbel, C. Petitto, G. Delahay, Novel V2O5-CeO2-TiO2-SO42- nanostructured aerogel catalyst for the low temperature selective catalytic reduction of NO by NH3 in excess O2, Appl. Catal. B 224 (2018) 264–275. [46] R. Kuma, T. Kitano, T. Tsujiguchi, T. Tanaka, Effect of molybdenum on the structure and performance of V2O5/TiO2-SiO2-MoO3 catalysts for the oxidative degradation of o-chlorotoluene, Appl. Catal. A 595 (2020) 117496. [47] M.A. Bañares, N.D. Spencer, M.D. Jones, I.E. Wachs, Effect of alkali metal cations on the structure of catalysts and its relevance to the selective oxidation of methane and methanol, J. Catal. 146 (1) (1994) 204–210. [48] Z.M. Liu, S.X. Zhang, J.H. Li, J.Z. Zhu, L.L. Ma, Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3, Appl. Catal. B 158-159 (2014) 11–19. [49] J. Mendialdua, R. Casanova, Y. Barbaux, XPS studies of V2O5, V6O13, VO2 and V2O3, J. Electron Spectrosc. Relat. Phenom. 71 (3) (1995) 249–261. [50] Y. Qiu, B. Liu, J. Du, Q. Tang, Z.H. Liu, R.L. Liu, C.Y. Tao, The monolithic cordierite supported V2O5-MoO3/TiO2 catalyst for NH3-SCR, Chem. Eng. J. 294 (2016) 264–272. [51] M.V. Ganduglia-Pirovano, C. Popa, J. Sauer, H. Abbott, A. Uhl, M. Baron, D. Stacchiola, O. Bondarchuk, S. Shaikhutdinov, H.J. Freund, Role of ceria in oxidative dehydrogenation on supported vanadia catalysts, J. Am. Chem. Soc. 132 (7) (2010) 2345–2349. [52] S.J. Khatib, R. Guil-López, M.A. Peña, J.L.G. Fierro, M.A. Bañares, Alumina-supported V-Mo-O mixed oxide catalysts, the formation of phases involving aluminum: AlVMoO7, Catal. Today 118 (3–4) (2006) 353–359. [53] X.W. Lou, H.C. Zeng, Complex alpha-MoO(3) nanostructures with external bonding capacity for self-assembly, J. Am. Chem. Soc. 125 (9) (2003) 2697–2704. [54] Y.L. Meng, T. Wang, S. Chen, Y.J. Zhao, X.B. Ma, J.L. Gong, Selective oxidation of methanol to dimethoxymethane on V2O5-MoO3/γ-Al2O3 catalysts, Appl. Catal. B 160-161 (2014) 161–172. [55] C. Li, K. Domen, K.I. Maruya, T. Onishi, I.r. spectra of dioxygen species formed on CeO2 at room temperature, J. Chem. Soc., Chem. Commun. (23) (1988) 1541. [56] B. Pongthawornsakun, S. Phatyenchuen, J. Panpranot, P. Praserthdam, The low temperature selective oxidation of H2S to elemental sulfur on TiO2 supported V2O5 catalysts, J. Environ. Chem. Eng. 6 (1) (2018) 1414–1423. [57] V.D. Sokolovskii, Principles of oxidative catalysis on solid oxides, Catal. Rev. 32 (1–2) (1990) 1–49. [58] A. Vittadini, M. Casarin, M. Sambi, A. Selloni, First-principles studies of vanadia-titania catalysts: beyond the monolayer, J. Phys. Chem. B 109 (46) (2005) 21766–21771. [59] A. Suarez Negreira, J. Wilcox, Role of WO3 in the Hg oxidation across the V2O5–WO3–TiO2 SCR catalyst: a DFT study, J. Phys. Chem. C 117 (46) (2013) 24397–24406. [60] Y. Zhang, H.R. Guo, J.K. Ren, X.P. Li, W.L. Ren, R. Song, MoO3 crystal facets modulation by doping heteroatom Fe from polyoxometalate for quasi-industrial oxygen evolution reaction, Appl. Catal. B 298 (2021) 120582. [61] M. Faraldos, M.A. Bañares, J.A. Anderson, H.C. Hu, I.E. Wachs, J.L.G. Fierro, Comparison of silica-supported MoO3 and V2O5Catalysts in the selective partial oxidation of methane, J. Catal. 160 (2) (1996) 214–221. [62] G. Brezicki, J. Zheng, C. Paolucci, R. Schlögl, R.J. Davis, Effect of the co-cation on Cu speciation in Cu-exchanged mordenite and ZSM-5 catalysts for the oxidation of methane to methanol, ACS Catal. 11 (9) (2021) 4973–4987. |