[1] L.X. Fang, J.F. Zhou, C.Q. He, Y.Q. Tao, C.Y. Wang, M.L. Dai, H.Y. Wang, J. Sun, Q.A. Fang, Understanding how intrinsic micro-pores affect the dielectric properties of polymers: An approach to synthesize ultra-low dielectric polymers with bulky tetrahedral units as cores, Polym. Chem. 11 (15) (2020) 2674–2680. [2] S.H. Han, Y.N. Li, F.Y. Hao, H. Zhou, S.L. Qi, G.F. Tian, D.Z. Wu, Ultra-low dielectric constant polyimides: Combined efforts of fluorination and micro-branched crosslink structure, Eur. Polym. J. 143 (2021) 110206. [3] Y. Yuan, S. Diao, C.D. Zhao, S.H. Ge, X. Wang, B.R. Duan, Preparation of hollow glass microsphere/organic silicone resin composite material with low dielectric constant by In-situ polymerization, Silicon 12 (6) (2020) 1417–1423. [4] Z.L. Wang, X.R. Zhang, L. Weng, L.Z. Liu, Low dielectric constant and high toughness epoxy resin based on hyperbranched polyester grafted by flexible chain modified, J. Mater. Sci. 30 (6) (2019) 5936–5946. [5] Y.Y. Ma, L. Xu, Z.A. He, J.W. Xie, L. Shi, M.Y. Zhang, W.L. Zhang, W.W. Cui, Tunable dielectric and other properties in high-performance sandwich-type polyimide films achieved by adjusting the porous structure, J. Mater. Chem. C 7 (24) (2019) 7360–7370. [6] J.Q. Ren, P. Yang, Z.J. Peng, X.L. Fu, Novel Al2Mo3O12-PTFE composites for microwave dielectric substrates, Ceram. Int. 47 (15) (2021) 20867–20874. [7] H.B. Zhu, W.H. Hu, Y.D. Xu, B.H. Wang, D. Zheng, Y.Z. Fu, C.Y. Zhang, G.Z. Zhao, Z. Wang, Gradient structure based dual-robust superhydrophobic surfaces with high-adhesive force, Appl. Surf. Sci. 463 (2019) 427–434. [8] J.A. Liu, X. Lu, Z. Xin, C.L. Zhou, Synthesis and surface properties of low surface free energy silane-functional polybenzoxazine films, Langmuir 29 (1) (2013) 411–416. [9] K. Zeng, H. Li, H.X. Shi, J.Y. Wu, J.L. Xu, Y.T. Li, C.X. Zhao, Synthesis and thermal properties of silicon-containing benzoxazine, High Perform. Polym. 32 (1) (2020) 59–64. [10] R. Yang, K. Zhang, Strategies for improving the performance of diallyl bisphenol A-based benzoxazine resin: Chemical modification via acetylene and physical blending with bismaleimide, React. Funct. Polym. 165 (2021) 104958. [11] Z.J. Feng, M. Zeng, D.W. Meng, J.B. Chen, W.L. Zhu, Q.Y. Xu, J.X. Wang, A novel bio-based benzoxazine resin with outstanding thermal and superhigh-frequency dielectric properties, J. Mater. Sci. 31 (5) (2020) 4364–4376. [12] K. Zhang, B.R. Hao, H. Ishida, Synthesis of a smart bisbenzoxazine with combined advantages of bismaleimide and benzoxazine resins and its unexpected formation of very high performance cross-linked polybenzoxazole, Polymer 223 (2021) 123703. [13] J.L. Xu, H. Li, K. Zeng, G.X. Li, X.H. Zhao, C.X. Zhao, Curing kinetics and thermal stability of novel siloxane-containing benzoxazines, Thermochim. Acta 671 (2019) 119–126. [14] A. Ábrahám, L. Kócs, E. Albert, B. Tegze, B. Szolnoki, N. Nagy, G. Sáfrán, P. Basa, Z. Hórvölgyi, Durability of microporous hybrid silica coatings: Optical and wetting properties, Thin Solid Films 699 (2020) 137914. [15] Y.D. Zhao, M.L. Yuan, L.T. Wang, X. Lu, Z. Xin, Preparation of bio-based polybenzoxazine/pyrogallol/polyhedral oligomeric silsesquioxane nanocomposites: Low dielectric constant and low curing temperature, Macromol. Mater. Eng. 307 (3) (2022) 2100747. [16] S.P. Asrafali, T. Periyasamy, R. Haldhar, S. Madhappan, S.C. Kim, Fabrication of SiO2-reinforced polybenzoxazine composites and their thermal and dielectric properties, J. Polym. Res. 29 (5) (2022) 1–11. [17] S. Kumar, A. Hariharan, M. Alagar, K. Dinakaran, Low-k and UV shielding polybenzoxazine nanocomposites synthesised from quinoline amine and bio-silica, Compos. Interfaces 28 (9) (2021) 905–923. [18] A. Forchetti Casarino, S.A. Bortolato, N. Casis, D.A. Estenoz, M.E. Spontón, Novel polybenzoxazine and polybenzoxazine/epoxy thermosetting copolymers containing polysilsesquioxane nanostructures for high-performance thermal protection systems, Eur. Polym. J. 182 (2023) 111722. [19] M.L. Yuan, X. Lu, Y.D. Zhao, S.W. Kuo, Z. Xin, Study of two novel siloxane-containing polybenzoxazines with intrinsic low dielectric constant, Polymer 245 (2022) 124572. [20] C.L. Zhou, X. Lu, Z. Xin, J. Liu, Corrosion resistance of novel silane-functional polybenzoxazine coating on steel, Corros. Sci. 70 (2013) 145–151. [21] R. Joseph, S.M. Zhang, W.T. Ford, Structure and dynamics of a colloidal silica–poly(methyl methacrylate) composite by 13C and 29Si MAS NMR spectroscopy, Macromolecules 29 (4) (1996) 1305–1312. [22] Y.Y. Ma, Z.A. He, Z.W. Liao, J.W. Xie, H.Y. Yue, X. Gao, Facile strategy for low dielectric constant polyimide/silsesquioxane composite films: Structural design inspired from nature, J. Mater. Sci. 56 (12) (2021) 7397–7408. [23] C.L. Zhou, M. Tao, J. Liu, Z. Xin, Thermal curing behavior of benzoxazine functional polysilsesquioxane nanospheres, Thermochim. Acta 678 (2019) 178295. [24] L.E. Nielsen, Cross-linking–effect on physical properties of polymers, J. Macromol. Sci. C 3 (1) (1969) 69–103. [25] H. Yee Low, H. Ishida, Structural effects of phenols on the thermal and thermo-oxidative degradation of polybenzoxazines, Polymer 40 (15) (1999) 4365–4376. [26] S.W. King, D. Jacob, D. Vanleuven, B. Colvin, J. Kelly, M. French, J. Bielefeld, D. Dutta, M. Liu, D. Gidley, Film property requirements for hermetic low-k a-SiOxCyNz: H dielectric barriers, ECS J. Solid State Sci. Technol. 1 (6) (2012) N115–N122. [27] V. Selvaraj, T.R. Raghavarshini, M. Alagar, Low temperature cure siloxane based hybrid renewable cardanol benzoxazine composites for coating applications, J. Polym. Environ. 27 (12) (2019) 2682–2696. [28] Li, X.; Feng, J.; Zhang, S.; Tang, Y.; Hu, X.; Liu, X.; Liu, X. Epoxy/benzoxazinyl POSS nanocomposite resin with low dielectric constant and excellent thermal stability. J. Appl. Polym. Sci. 2020 138 49887-49895. [29] X.D. Li, J.C. Feng, S.A. Zhang, Y. Tang, X.Y. Hu, X.P. Liu, X.Q. Liu, Epoxy/benzoxazinylPOSS nanocomposite resin with low dielectric constant and excellent thermal stability, J. Appl. Polym. Sci. 138 (8) (2021) 49887. |