[1] M. Terrones, A.R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y.I. Vega-Cantú, F.J. Rodríguez-Macías, A.L. Elías, E. Muñoz-Sandoval, A.G. Cano-Márquez, J.C. Charlier, H. Terrones, Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications, Nano Today 5 (4) (2010) 351–372. [2] Y.W. Li, J.T. Hu, Z.Q. Wang, K. Yang, W.Y. Huang, B. Cao, Z.B. Li, W. Zhang, F. Pan, Low-temperature catalytic graphitization to enhance Na-ion transportation in carbon electrodes, ACS Appl. Mater. Interfaces 11 (27) (2019) 24164–24171. [3] S. Zhang, Q.F. Liu, H. Zhang, R.J. Ma, K. Li, Y.K. Wu, B.J. Teppen, Structural order evaluation and structural evolution of coal derived natural graphite during graphitization, Carbon 157 (2020) 714–723. [4] S.B. Yoon, G.S. Chai, S.K. Kang, J.S. Yu, K.P. Gierszal, M. Jaroniec, Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates, J. Am. Chem. Soc. 127 (12) (2005) 4188–4189. [5] Y.V. Fedoseeva, A.V. Okotrub, V.O. Koroteev, Y.M. Borzdov, Y.N. Palyanov, Y.V. Shubin, E.A. Maksimovskiy, A.A. Makarova, W. Münchgesang, L.G. Bulusheva, A. Vyalikh, Graphitization of 13C enriched fine-grained graphitic material under high-pressure annealing, Carbon 141 (2019) 323–330. [6] G.L. Foster, D.L. Royer, D.J. Lunt, Future climate forcing potentially without precedent in the last 420 million years, Nat. Commun. 8 (2017) 14845. [7] S. Baetge, M. Kaltschmitt, Rice straw and rice husks as energy sources—comparison of direct combustion and biogas production, Biomass Convers. Biorefin. 8 (3) (2018) 719–737. [8] Z.M. Chen, X.F. Wang, B.C. Xue, Q.L. Wei, L.H. Hu, Z.C. Wang, X.M. Yang, J.S. Qiu, Self-templating synthesis of 3D hollow tubular porous carbon derived from straw cellulose waste with excellent performance for supercapacitors, ChemSusChem 12 (7) (2019) 1390–1400. [9] R. Khosravi, A. Azizi, R. Ghaedrahmati, V.K. Gupta, S. Agarwal, Adsorption of gold from cyanide leaching solution onto activated carbon originating from coconut shell—Optimization, kinetics and equilibrium studies, J. Ind. Eng. Chem. 54 (2017) 464–471. [10] X. Zhang, Y. Li, D.Q. Li, J. Xiao, W.J. Zhang, Y.D. Xu, Rice husk derived porous carbon decorated with hierarchical molybdenum disulfide microflowers: Synergistic lithium storage performance and lithiation kinetics, Int. J. Hydrog. Energy 44 (14) (2019) 7438–7447. [11] M.P. Bichat, E. Raymundo-Piñero, F. Béguin, High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte, Carbon 48 (15) (2010) 4351–4361. [12] K.Y. Lim, K.Y. Foo, One-step synthesis of carbonaceous adsorbent from soybean bio-residue by microwave heating: Adsorptive, antimicrobial and antifungal behavior, Environ. Res. 204 (2022) 112044. [13] Y. Liu, Q. Liu, J. Gu, D. Kang, F. Zhou, W. Zhang, Y. Wu, D. Zhang, Highly porous graphitic materials prepared by catalytic graphitization, Carbon N Y. 64 (2013) 132–140. https://doi.org/10.1016/j.carbon.2013.07.044. [14] F. Jiang, Y.G. Yao, B. Natarajan, C.P. Yang, T.T. Gao, H. Xie, Y.L. Wang, L.S. Xu, Y.K. Chen, J. Gilman, L.F. Cui, L.B. Hu, Ultrahigh-temperature conversion of biomass to highly conductive graphitic carbon, Carbon 144 (2019) 241–248. [15] X.B. Jin, R. He, S. Dai, Electrochemical graphitization: An efficient conversion of amorphous carbons to nanostructured graphites, Chem. A Eur. J. 23 (48) (2017) 11455–11459. [16] Y.N. Gong, D.L. Li, C.Z. Luo, Q. Fu, C.X. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors, Green Chem. 19 (17) (2017) 4132–4140. [17] A. Gomez-Martin, J. Martinez-Fernandez, M. Ruttert, A. Heckmann, M. Winter, T. Placke, J. Ramirez-Rico, Iron-catalyzed graphitic carbon materials from biomass resources as anodes for lithium-ion batteries, ChemSusChem 11 (16) (2018) 2776–2787. [18] J.X. Hu, Y.Y. Xie, M. Yin, Z.A. Zhang, Nitrogen doping and graphitization tuning coupled hard carbon for superior potassium-ion storage, J. Energy Chem. 49 (2020) 327–334. [19] K.L. Wang, Y.H. Cao, X.M. Wang, P.R. Kharel, W. Gibbons, B. Luo, Z.R. Gu, Q.H. Fan, L. Metzger, Nickel catalytic graphitized porous carbon as electrode material for high performance supercapacitors, Energy 101 (2016) 9–15. [20] Y.B. Cui, H.X. He, J.D. Atkinson, Iron/carbon composites for Cr(VI) removal prepared from harmful algal bloom biomass via metal bioaccumulation or biosorption, ACS Sustainable Chem. Eng. 7 (1) (2019) 1279–1288. [21] H.T. Li, H. Zhang, K.J. Li, J.L. Zhang, M.M. Sun, B.X. Su, Catalytic graphitization of coke carbon by iron: Understanding the evolution of carbon Structure, morphology and lattice fringes, Fuel 279 (2020) 118531. [22] Y. Xu, C.L. Zhang, M. Zhou, Q. Fu, C.X. Zhao, M.H. Wu, Y. Lei, Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries, Nat. Commun. 9 (2018) 1720. [23] L.L. Gai, J.B. Li, Q. Wang, R. Tian, K. Li, Evolution of biomass to porous graphite carbon by catalytic graphitization, J. Environ. Chem. Eng. 9 (6) (2021) 106678. [24] F. Destyorini, R. Yudianti, Y. Irmawati, A. Hardiansyah, Y.I. Hsu, H. Uyama, Temperature driven structural transition in the nickel-based catalytic graphitization of coconut coir, Diam. Relat. Mater. 117 (2021) 108443. [25] L.L. Wang, L. Hu, W. Yang, D.W. Liang, L.L. Liu, S. Liang, C.Y. Yang, Z.Z. Fang, Q.A. Dong, C.H. Deng, N/S-co-doped porous carbon sheets derived from bagasse as high-performance anode materials for sodium-ion batteries, Nanomaterials 9 (9) (2019) 1203. [26] R.D. Hunter, J. Ramírez-Rico, Z. Schnepp, Iron-catalyzed graphitization for the synthesis of nanostructured graphitic carbons, J. Mater. Chem. A 10 (9) (2022) 4489–4516. [27] A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun. 143 (1–2) (2007) 47–57. [28] I. Major, J.M. Pin, E. Behazin, A. Rodriguez-Uribe, M. Misra, A. Mohanty, Graphitization of Miscanthus grass biocarbon enhanced by in situ generated FeCo nanoparticles, Green Chem. 20 (10) (2018) 2269–2278. [29] P. Su, M.H. Zhou, G. Song, X.D. Du, X.Y. Lu, Efficient H2O2 generation and spontaneous OH conversion for in situ phenol degradation on nitrogen-doped graphene: Pyrolysis temperature regulation and catalyst regeneration mechanism, J. Hazard. Mater. 397 (2020) 122681. [30] L.Y. Zhao, X.Y. Zhao, L.T. Burke, J.C. Bennett, R.A. Dunlap, M.N. Obrovac, Voronoi-tessellated graphite produced by low-temperature catalytic graphitization from renewable resources, ChemSusChem 10 (17) (2017) 3409–3418. [31] S. Yoo, C.C. Chung, S.S. Kelley, S. Park, Graphitization behavior of loblolly pine wood investigated by in situ high temperature X-ray diffraction, ACS Sustainable Chem. Eng. 6 (7) (2018) 9113–9119. [32] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol. 8 (4) (2013) 235–246. [33] Z.M. Chen, X.F. Wang, B.C. Xue, W. Li, Z.Y. Ding, X.M. Yang, J.S. Qiu, Z.C. Wang, Rice husk-based hierarchical porous carbon for high performance supercapacitors: The structure-performance relationship, Carbon 161 (2020) 432–444. [34] I. Yang, M. Jung, M.S. Kim, D. Choi, J.C. Jung, Physical and chemical activation mechanisms of carbon materials based on the microdomain model, J. Mater. Chem. A 9 (15) (2021) 9815–9825. [35] L.B. Hoch, E.J. Mack, B.W. Hydutsky, J.M. Hershman, J.M. Skluzacek, T.E. Mallouk, Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium, Environ. Sci. Technol. 42 (7) (2008) 2600–2605. [36] W.J. Liu, K. Tian, Y.R. He, H. Jiang, H.Q. Yu, High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage, Environ. Sci. Technol. 48 (23) (2014) 13951–13959. [37] F. Qian, X.D. Zhu, Y.C. Liu, S.L. Hao, Z.J. Ren, B. Gao, R.L. Zong, S.C. Zhang, J.M. Chen, Synthesis, characterization and adsorption capacity of magnetic carbon composites activated by CO2: Implication for the catalytic mechanisms of iron salts, J. Mater. Chem. A 4 (48) (2016) 18942–18951. [38] Q.G. Wang, C.L. Li, L. He, X.F. Yu, W.P. Zhang, A.H. Lu, Outside-in catalytic graphitization method for synthesis of dispersible and uniform graphitic porous carbon nanospheres, J. Colloid Interface Sci. 599 (2021) 586–594. |