[1] T.A. Moore, Coalbed methane: a review, Int. J. Coal Geol. 101(2012) 36-81. [2] C.Q. Fu, Y. Du, W.L. Song, S.X. Sang, Z.J. Pan, N. Wang, Application of automated mineralogy in petroleum geology and development and CO2 sequestration: a review, Mar. Petrol. Geol. 151(2023) 106206. [3] Z.J. Pan, D.A. Wood, Coalbed methane (CBM) exploration, reservoir characterisation, production, and modelling: a collection of published research (2009-2015), J. Nat. Gas Sci. Eng. 26(2015) 1472-1484. [4] S.X. Sang, L. Yuan, S.Q. Liu, S.J. Han, Y.J. Zheng, T. Liu, X.Z. Zhou, R. Wang, Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization, J. China Coal Soc. 47(2022) 1430-1451. (in Chinese). [5] X.G. Zhang, R. Pathegama Gamage, M.S.A. Perera, H.Q. A., A.S. Ranathunga, The influence of CO2 saturation time on the coal gas flow: fractured bituminous coal, Fuel 240(2019) 153-161. [6] Q.F. Jia, D.M. Liu, Y.D. Cai, Y.B. Yao, Y.J. Lu, Y.F. Zhou, Variation of adsorption effects in coals with different particle sizes induced by differences in microscopic adhesion, Chem. Eng. J. 452(2023) 139511. [7] X.X. Fu, D.F. Zhang, W.P. Jiang, Z.M. Lun, C.P. Zhao, H.T. Wang, Y.H. Li, Influence of physicochemical properties of coals on pore morphology and methane adsorption: a perspective, Chem. Ind. Eng. Prog. 38(2019) 2714-2725. (in Chinese). [8] X.X. Fu, Z.M. Lun, C.P. Zhao, X. Zhou, H.T. Wang, X.T. Zhou, Y. Xu, H. Zhang, D.F. Zhang, Influences of controlled microwave field irradiation on physicochemical property and methane adsorption and desorption capability of coals: implications for coalbed methane (CBM) production, Fuel 301(2021) 121022. [9] J.P. Zhou, G.J. Liu, Y.D. Jiang, X.F. Xian, Q.L. Liu, D.C. Zhang, J.Q. Tan, Supercritical carbon dioxide fracturing in shale and the coupled effects on the permeability of fractured shale: an experimental study, J. Nat. Gas Sci. Eng. 36(2016) 369-377. [10] J.H. Levy, S.J. Day, J.S. Killingley, Methane capacities of Bowen Basin coals related to coal properties, Fuel 76(9) (1997) 813-819. [11] A. Salmachi, M. Haghighi, Feasibility study of thermally enhanced gas recovery of coal seam gas reservoirs using geothermal resources, Energy Fuels 26(8) (2012) 5048-5059. [12] G. Xu, J.X. Huang, G.Z. Hu, N. Yang, J.Q. Zhu, P. Chang, Experimental study on effective microwave heating/fracturing of coal with various dielectric property and water saturation, Fuel Process. Technol. 202(2020) 106378. [13] Q.R. Liu, H. Xia, The effect of additive on temperature rising characteristics during coal pyrolysis in microwave field, Adv. Mater. Res. 512-515(2012) 1790-1794. [14] Y.D. Hong, B.Q. Lin, W. Nie, C.J. Zhu, Z. Wang, H. Li, Microwave irradiation on pore morphology of coal powder, Fuel 227(2018) 434-447. [15] J.X. Huang, G. Xu, Y.P. Liang, G.Z. Hu, P. Chang, Improving coal permeability using microwave heating technology-a review, Fuel 266(2020) 117022. [16] M.D. Sun, X. Zhao, Q. Liu, C.F. Ukaomah, S. Jiang, Q.H. Hu, Q.M. Wang, T.P. Blach, B.S. Yu, G. Cheng, Investigation of microwave irradiation stimulation to enhance the pore connectivity of shale, Energy Fuels 35(4) (2021) 3240-3251. [17] H.B. Zuo, S.Y. Long, C. Wang, P.C. Zhang, A review of microwave treatment on coal. 7th International Symposium on High-Temperature Metallurgical Processing. Cham: Springer International Publishing, (2016) 617-624. [18] Y.L. Zheng, Q.B. Zhang, J. Zhao, Effect of microwave treatment on thermal and ultrasonic properties of gabbro, Appl. Therm. Eng. 127(2017) 359-369. [19] Y. Xu, Z.M. Lun, Z.J. Pan, H.T. Wang, X. Zhou, C.P. Zhao, D.F. Zhang, Occurrence space and state of shale oil: a review, J. Petrol. Sci. Eng. 211(2022) 110183. [20] L.C. Ge, Y.W. Zhang, Z.H. Wang, J.H. Zhou, K.F. Cen, Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals, Energy Convers. Manag. 71(2013) 84-91. [21] J.X. Lu, H. Li, S.L. Shi, B.X. Huang, Y. Lu, M. Li, Q. Ye, Microwave-induced microstructure evolution of coal and its effects on the methane adsorption characteristic, Energy Fuels 35(5) (2021) 4081-4090. [22] Z.J. Wang, X.L. Li, X. Gao, D.Y. Chen, Z.G. Zhu, Experimental research on the influence of microwave radiation on coal permeability and microstructure, ACS Omega 6(50) (2021) 34375-34385. [23] H. Li, C.P. Xu, G.H. Ni, J.X. Lu, Y. Lu, S.L. Shi, M. Li, Q. Ye, Spectroscopic (FTIR, 1H NMR) and SEM investigation of physicochemical structure changes of coal subjected to microwave-assisted oxidant stimulation, Fuel 317(2022) 123473. [24] H. Li, S.L. Shi, B.Q. Lin, J.X. Lu, Q. Ye, Y. Lu, Z. Wang, Y.D. Hong, X.N. Zhu, Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals, Energy 187(2019) 115986. [25] L.K. Zhang, T.H. Kang, J.T. Kang, X.Y. Zhang, B. Zhang, J.Q. Guo, Z.Y. Chai, Response of molecular structures and methane adsorption behaviors in coals subjected to cyclical microwave exposure, ACS Omega 6(47) (2021) 31566-31577. [26] Z.J. Wang, X.J. Wang, X.T. Ma, X.M. Li, Z.G. Zhu, Laboratory measurements of methane desorption behavior on coal under different modes of real-time microwave loading, Adsorption 26(1) (2020) 61-73. [27] H. Zarrin, D. Higgins, Y. Jun, Z.W. Chen, M. Fowler, Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells, J. Phys. Chem. C 115(42) (2011) 20774-20781. [28] V. Tozzini, V. Pellegrini, Reversible hydrogen storage by controlled buckling of graphene layers, J. Phys. Chem. C 115(51) (2011) 25523-25528. [29] S. Haydar, M.A. Ferro-Garcia, J. Rivera-Utrilla, J.P. Joly, Adsorption of p-nitrophenol on an activated carbon with different oxidations, Carbon 41(3) (2003) 387-395. [30] R. Muzyka, M. Kwoka, L. Smedowski, N. Diez, G. Gryglewicz, Oxidation of graphite by different modified Hummers methods, N. Carbon Mater. 32(1) (2017) 15-20. [31] A. Bhatnagar, W. Hogland, M. Marques, M. Sillanpaa, An overview of the modification methods of activated carbon for its water treatment applications, Chem. Eng. J. 219(2013) 499-511. [32] C. Sun, T. Chen, Q.X. Huang, J. Wang, S.Y. Lu, J.H. Yan, Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO4 modification, Environ. Sci. Pollut. Res. Int. 26(9) (2019) 8902-8913. [33] N.Q. Zhao, N. Wei, J.J. Li, Z.J. Qiao, J. Cui, F. He, Surface properties of chemically modified activated carbons for adsorption rate of Cr (VI), Chem. Eng. J. 115(1-2) (2005) 133-138. [34] A.N A. El-Hendawy, Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon, Carbon 41(4) (2003) 713-722. [35] Y.H. Li, C.W. Lee, B.K. Gullett, Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption, Fuel 82(4) (2003) 451-457. [36] N.C. Feng, W. Fan, M.L. Zhu, X.Y. Guo, Adsorption of Cd2+ in aqueous solutions using KMnO4-modified activated carbon derived from Astragalus residue, Trans. Nonferrous Metals Soc. China 28(4) (2018) 794-801. [37] S.L. Liu, X.X. Fu, Y. Xu, Z.M. Lun, C.P. Zhao, H.T. Wang, D.F. Zhang, Influence of water on nitrous oxide adsorption and desorption on coals, Ind. Eng. Chem. Res. 60(12) (2021) 4714-4726. [38] D.F. Zhang, S.L. Liu, X.X. Fu, S.Q. Jia, C.G. Min, Z.J. Pan, Adsorption and desorption behaviors of nitrous oxide on various rank coals: implications for oxy-coal combustion flue gas sequestration in deep coal seams, Energy Fuels 33(11) (2019) 11494-11506. [39] A. Liu, S.M. Liu, P. Liu, K. Wang, Water sorption on coal: effects of oxygen-containing function groups and pore structure, Int. J. Coal Sci. Technol. 8(5) (2021) 983-1002. [40] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional), Pure Appl. Chem. 54(11) (1982) 2201-2218. [41] Y. Toda, M. Hatami, S. Toyoda, Y. Yoshida, H. Honda. Micropore structure of coal, Fuel, 50(197) 187-200. [42] Q.Q. Wang, D.F. Zhang, H.H. Wang, W.P. Jiang, X.P. Wu, J. Yang, P.L. Huo, Influence of CO2 exposure on high-pressure methane and CO2 adsorption on various rank coals: implications for CO2 sequestration in coal seams, Energy Fuels 29(6) (2015) 3785-3795. [43] M.D. Sun, B.S. Yu, Q.H. Hu, Y.F. Zhang, B. Li, R. Yang, Y.B. Melnichenko, G. Cheng, Pore characteristics of Longmaxi shale gas reservoir in the Northwest of Guizhou, China: investigations using small-angle neutron scattering (SANS), helium pycnometry, and gas sorption isotherm, Int. J. Coal Geol. 171(2017) 61-68. [44] Y. Xu, Z.M. Lun, X. Zhou, G.L. Zhang, H.T. Wang, C.P. Zhao, H. Zhang, D.F. Zhang, Influences of microwave irradiation on pore, fracture and methane adsorption of deep shale, J. Nat. Gas Sci. Eng. 101(2022) 104489. [45] M.D. Sun, L.H. Zhang, Q.H. Hu, Z.J. Pan, B.S. Yu, L.W. Sun, L.F. Bai, L.D. Connell, Y.F. Zhang, G. Cheng, Pore connectivity and water accessibility in Upper Permian transitional shales, Southern China, Mar. Petrol. Geol. 107(2019) 407-422. [46] J. Zou, R. Rezaee, Y.J. Yuan, Investigation on the adsorption kinetics and diffusion of methane in shale samples, J. Petrol. Sci. Eng. 171(2018) 951-958. [47] J. Zou, R. Rezaee, Q. Xie, L.J. You, K.Q. Liu, A. Saeedi, Investigation of moisture effect on methane adsorption capacity of shale samples, Fuel 232(2018) 323-332. [48] D.F. Zhang, Y.J. Cui, B. Liu, S.G. Li, W.L. Song, W.G. Lin, Supercritical pure methane and CO2 adsorption on various rank coals of China: experiments and modeling, Energy Fuels 25(4) (2011) 1891-1899. [49] X.W. Cai, D.Y. Li, D.F. Zhang, Methane adsorption and desorption on a deep shale matrix under simulative reservoir temperature and pressure, Energy Fuels 36(19) (2022) 11888-11902. [50] R. Span, W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J. Phys. Chem. Ref. Data 25(6) (1996) 1509-1596. [51] X.X. Fu, C.P. Zhao, Z.M. Lun, H.T. Wang, M. Wang, D.F. Zhang, Influences of controlled microwave field radiation on pore structure, surface chemistry and adsorption capability of gas-bearing shales, Mar. Petrol. Geol. 130(2021) 105134. [52] Z.M. Lun, X. Zhou, X.X. Fu, X.W. Cai, Y. Xu, D.F. Zhang, Responses of pore structure parameters and functional group compositions of coals to irradiation power: implication to coalbed methane production via microwave irradiation, Energy Sources, Part A Recovery, Util. Environ. Eff. 44(3) (2022) 7709-7725. [53] R. Yang, S.L. Liu, H.T. Wang, Z.M. Lun, X. Zhou, C.P. Zhao, C.G. Min, H. Zhang, Y. Xu, D.F. Zhang, Influence of H2O on adsorbed CH4 on coal displaced by CO2 injection: implication for CO2 sequestration in coal seam with enhanced CH4 recovery (CO2-ECBM), Ind. Eng. Chem. Res. 60(43) (2021) 15817-15833. [54] H. Zhang, Z.C. Hu, Y. Xu, X.X. Fu, W. Li, D.F. Zhang, Impacts of long-term exposure to supercritical carbon dioxide on physicochemical properties and adsorption and desorption capabilities of moisture-equilibrated coals, Energy Fuels 35(15) (2021) 12270-12287. [55] Y. Song, Y.M. Zhu, W. Li, Structure evolution of oxygen functional groups in Dongsheng long flame coal by 13C-NMR and FTIR, J. Fuel Chem. Technol. 5(2015) 519-529. (in Chinese). [56] L. Perreux, A. Loupy, A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations, Tetrahedron 57(45) (2001) 9199-9223. [57] D. Dallinger, Mikrowellen in der organischen synthese, Chem. Unserer Zeit 47(6) (2013) 356-366. [58] E.L. Zodrow, J.A. D'Angelo, M. Mastalerz, C.J. Cleal, D. Keefe, Phytochemistry of the fossilized-cuticle frond Macroneuropteris macrophylla (Pennsylvanian seed fern, Canada), Int. J. Coal Geol. 84(2) (2010) 71-82. [59] Z.Y. Niu, G.J. Liu, H. Yin, D. Wu, C.C. Zhou, Investigation of mechanism and kinetics of non-isothermal low temperature pyrolysis of perhydrous bituminous coal by in situ FTIR, Fuel 172(2016) 1-10. [60] G.R. Gavalas, Coal Pyrolysis, New York: Elsevier Scientific Publishing Company, 1982. [61] X.Q. He, X.F. Liu, B.S. Nie, D.Z. Song, FTIR and Raman spectroscopy characterization of functional groups in various rank coals, Fuel 206(2017) 555-563. [62] G.S. Zhou, Q.X. Huang, B. Yu, H. Tong, Y. Chi, J.H. Yan, Effect of industrial microwave irradiation on the physicochemical properties and pyrolysis characteristics of lignite, Chin. J. Chem. Eng. 26(5) (2018) 1171-1178. [63] S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der waals adsorption of gases, J. Am. Chem. Soc. 62(7) (1940) 1723-1732. [64] Z.C. Hu, D.F. Zhang, M. Wang, S.L. Liu, Influences of supercritical carbon dioxide fluid on pore morphology of various rank coals: a review, Energy Explor. Exploit. 38(5) (2020) 1267-1294. [65] D.F. Zhang, J. Zhang, P.L. Huo, Q.Q. Wang, H.H. Wang, W.P. Jiang, J. Tao, L. Zhu, Influences of SO2, NO, and CO2 exposure on pore morphology of various rank coals: implications for coal-fired flue gas sequestration in deep coal seams, Energy Fuels 30(7) (2016) 5911-5921. [66] J. Zou, R. Rezaee, Effect of particle size on high-pressure methane adsorption of coal, Petrol. Res. 1(1) (2016) 53-58. [67] Z.K. Li, X.Y. Wei, H.L. Yan, Z.M. Zong, Insight into the structural features of Zhaotong lignite using multiple techniques, Fuel 153(2015) 176-182. [68] T. Shi, X.F. Wang, J. Deng, Z.Y. Wen, The mechanism at the initial stage of the room-temperature oxidation of coal, Combust. Flame 140(4) (2005) 332-345. [69] Y.S. Huang, H. Hu, The interaction of perrhenate and acidic/basic oxygen-containing groups on biochar surface: a DFT study, Chem. Eng. J. 381(2020) 122647. [70] S.Y. Liu, Fundamental Study on Pyrolysis of Chinese Steam Coals and Model Compounds Containing Oxygen, Taiyuan University of Technology, 2004. (in Chinese). [71] M.D. Donohue, G.L. Aranovich, Adsorption hysteresis in porous solids, J. Colloid Interface Sci. 205(1) (1998) 121-130. [72] Y. Zhang, W.L. Xing, S.Y. Liu, Y. Liu, M.J. Yang, J.F. Zhao, Y.C. Song, Pure methane, carbon dioxide, and nitrogen adsorption on anthracite from China over a wide range of pressures and temperatures: experiments and modeling, RSC Adv. 5(65) (2015) 52612-52623. [73] M. Sudibandriyo, S.A. Mohammad, R.L. Robinson Jr, K.A.M. Gasem, Ono-kondo model for high-pressure mixed-gas adsorption on activated carbons and coals, Energy Fuels 25(7) (2011) 3355-3367. [74] H. Bi, Z.X. Jiang, J.Z. Li, P. Li, L. Chen, Q.H. Pan, Y.X. Wu, The Ono-Kondo model and an experimental study on supercritical adsorption of shale gas: a case study on Longmaxi shale in southeastern Chongqing, China, J. Nat. Gas Sci. Eng. 35(2016) 114-121. [75] S. Harpalani, B.K. Prusty, P. Dutta, Methane/CO2 sorption modeling for coalbed methane production and CO2 sequestration, Energy Fuels 20(4) (2006) 1591-1599. [76] S. Ozawa, S. Kusumi, Y. Ogino, Physical adsorption of gases at high pressure. IV. An improvement of the Dubinin-astakhov adsorption equation, J. Colloid Interface Sci. 56(1) (1976) 83-91. [77] S.W. Zhou, H.Q. Xue, Y. Ning, W. Guo, Q. Zhang, Experimental study of supercritical methane adsorption in Longmaxi shale: insights into the density of adsorbed methane, Fuel 211(2018) 140-148. [78] Y. Gensterblum, A. Merkel, A. Busch, B.M. Krooss, High-pressure CH4 and CO2 sorption isotherms as a function of coal maturity and the influence of moisture, Int. J. Coal Geol. 118(2013) 45-57. [79] R.H. Perry, D.W. Green, Perry's Chemical Engineers' Handbook (seventh ed.), New York: McGraw-Hill 1997. [80] X.F. Liu, X.Q. Jia, W. Liu, B.S. Nie, C.P. Zhang, D.Z. Song, Mechanical strength and porosity changes of bituminous coal induced by supercritical CO2 interactions: influence of saturation pressure, Geoenergy Sci. Eng. 225(2023) 211691. [81] X.F. Liu, X.Q. Jia, Y. Niu, B.S. Nie, C.P. Zhang, D.Z. Song, Alterations in coal mechanical properties and permeability influenced by liquid CO2 phase change fracturing, Fuel 354(2023) 129254. |